
Data Analysis and Machine Learning:
Support Vector Machines

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

May 17, 2020

Support Vector Machines, overarching aims
A Support Vector Machine (SVM) is a very powerful and versatile Machine
Learning method, capable of performing linear or nonlinear classification, re-
gression, and even outlier detection. It is one of the most popular models in
Machine Learning, and anyone interested in Machine Learning should have it in
their toolbox. SVMs are particularly well suited for classification of complex but
small-sized or medium-sized datasets.

The case with two well-separated classes only can be understood in an
intuitive way in terms of lines in a two-dimensional space separating the two
classes (see figure below).

The basic mathematics behind the SVM is however less familiar to most of
us. It relies on the definition of hyperplanes and the definition of a margin
which separates classes (in case of classification problems) of variables. It is also
used for regression problems.

With SVMs we distinguish between hard margin and soft margins. The latter
introduces a so-called softening parameter to be discussed below. We distinguish
also between linear and non-linear approaches. The latter are the most frequent
ones since it is rather unlikely that we can separate classes easily by say straight
lines.

Hyperplanes and all that
The theory behind support vector machines (SVM hereafter) is based on the
mathematical description of so-called hyperplanes. Let us start with a two-
dimensional case. This will also allow us to introduce our first SVM examples.
These will be tailored to the case of two specific classes, as displayed in the figure
here based on the usage of the petal data.

c© 1999-2020, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

We assume here that our data set can be well separated into two domains,
where a straight line does the job in the separating the two classes. Here the
two classes are represented by either squares or circles.

What is a hyperplane?
The aim of the SVM algorithm is to find a hyperplane in a p-dimensional space,
where p is the number of features that distinctly classifies the data points.

In a p-dimensional space, a hyperplane is what we call an affine subspace of
dimension of p− 1. As an example, in two dimension, a hyperplane is simply
as straight line while in three dimensions it is a two-dimensional subspace, or
stated simply, a plane.

In two dimensions, with the variables x1 and x2, the hyperplane is defined as

b+ w1x1 + w2x2 = 0,

where b is the intercept and w1 and w2 define the elements of a vector
orthogonal to the line b + w1x1 + w2x2 = 0. In two dimensions we define the
vectors x = [x1, x2] and w = [w1, w2]. We can then rewrite the above equation
as

xTw + b = 0.

A p-dimensional space of features
We limit ourselves to two classes of outputs yi and assign these classes the values
yi = ±1. In a p-dimensional space of say p features we have a hyperplane defines
as

b+ wx1 + w2x2 + · · ·+ wpxp = 0.

If we define a matrixX = [x1,x2, . . . ,xp] of dimension n×p, where n represents
the observations for each feature and each vector xi is a column vector of the
matrix X,

xi =


xi1
xi2
. . .
. . .
xip

 .
If the above condition is not met for a given vector xi we have

b+ w1xi1 + w2xi2 + · · ·+ wpxip > 0,

if our output yi = 1. In this case we say that xi lies on one of the sides of the
hyperplane and if

b+ w1xi1 + w2xi2 + · · ·+ wpxip < 0,

for the class of observations yi = −1, then xi lies on the other side.

2

Equivalently, for the two classes of observations we have

yi (b+ w1xi1 + w2xi2 + · · ·+ wpxip) > 0.

When we try to separate hyperplanes, if it exists, we can use it to construct
a natural classifier: a test observation is assigned a given class depending on
which side of the hyperplane it is located.

The two-dimensional case
Let us try to develop our intuition about SVMs by limiting ourselves to a two-
dimensional plane. To separate the two classes of data points, there are many
possible lines (hyperplanes if you prefer a more strict naming) that could be
chosen. Our objective is to find a plane that has the maximum margin, i.e the
maximum distance between data points of both classes. Maximizing the margin
distance provides some reinforcement so that future data points can be classified
with more confidence.

What a linear classifier attempts to accomplish is to split the feature space
into two half spaces by placing a hyperplane between the data points. This
hyperplane will be our decision boundary. All points on one side of the plane
will belong to class one and all points on the other side of the plane will belong
to the second class two.

Unfortunately there are many ways in which we can place a hyperplane to
divide the data. Below is an example of two candidate hyperplanes for our data
sample.

Getting into the details
Let us define the function

f(x) = wTx+ b = 0,

as the function that determines the line L that separates two classes (our two
features), see the figure here.

Any point defined by xi and x2 on the line L will satisfy wT (x1 − x2) = 0.
The signed distance δ from any point defined by a vector x and a point x0

on the line L is then
δ = 1
||w||

(wTx+ b).

First attempt at a minimization approach
How do we find the parameter b and the vector w? What we could do is to
define a cost function which now contains the set of all misclassified points M
and attempt to minimize this function

C(w, b) = −
∑
i∈M

yi(wTxi + b).

3

We could now for example define all values yi = 1 as misclassified in case we
have wTxi + b < 0 and the opposite if we have yi = −1. Taking the derivatives
gives us

∂C

∂b
= −

∑
i∈M

yi,

and
∂C

∂w
= −

∑
i∈M

yixi.

Solving the equations
We can now use the Newton-Raphson method or different variants of the gradient
descent family (from plain gradient descent to various stochastic gradient descent
approaches) to solve the equations

b← b+ η
∂C

∂b
,

and
w ← w + η

∂C

∂w
,

where η is our by now well-known learning rate.

Code Example
The equations we discussed above can be coded rather easily (the framework
is similar to what we developed for logistic regression). We are going to set up
a simple case with two classes only and we want to find a line which separates
them the best possible way.

Problems with the Simpler Approach
There are however problems with this approach, although it looks pretty straight-
forward to implement. When running the above code, we see that we can easily
end up with many diffeent lines which separate the two classes.

For small gaps between the entries, we may also end up needing many
iterations before the solutions converge and if the data cannot be separated
properly into two distinct classes, we may not experience a converge at all.

A better approach
A better approach is rather to try to define a large margin between the two
classes (if they are well separated from the beginning).

Thus, we wish to find a margin M with w normalized to ||w|| = 1 subject to
the condition

yi(wTxi + b) ≥M ∀i = 1, 2, . . . , p.

4

All points are thus at a signed distance from the decision boundary defined by
the line L. The parameters b and w1 and w2 define this line.

We seek thus the largest value M defined by
1
||w||

yi(wTxi + b) ≥M ∀i = 1, 2, . . . , n,

or just
yi(wTxi + b) ≥M ||w|| ∀i.

If we scale the equation so that ||w|| = 1/M , we have to find the minimum of
wTw = ||w|| (the norm) subject to the condition

yi(wTxi + b) ≥ 1 ∀i.

We have thus defined our margin as the invers of the norm of w. We want
to minimize the norm in order to have a as large as possible margin M . Before
we proceed, we need to remind ourselves about Lagrangian multipliers.

A quick Reminder on Lagrangian Multipliers
Consider a function of three independent variables f(x, y, z) . For the function
f to be an extreme we have

df = 0.
A necessary and sufficient condition is

∂f

∂x
= ∂f

∂y
= ∂f

∂z
= 0,

due to
df = ∂f

∂x
dx+ ∂f

∂y
dy + ∂f

∂z
dz.

In many problems the variables x, y, z are often subject to constraints (such as
those above for the margin) so that they are no longer all independent. It is
possible at least in principle to use each constraint to eliminate one variable and
to proceed with a new and smaller set of independent varables.

The use of so-called Lagrangian multipliers is an alternative technique when
the elimination of variables is incovenient or undesirable. Assume that we have
an equation of constraint on the variables x, y, z

φ(x, y, z) = 0,

resulting in
dφ = ∂φ

∂x
dx+ ∂φ

∂y
dy + ∂φ

∂z
dz = 0.

Now we cannot set anymore
∂f

∂x
= ∂f

∂y
= ∂f

∂z
= 0,

if df = 0 is wanted because there are now only two independent variables!
Assume x and y are the independent variables. Then dz is no longer arbitrary.

5

Adding the Multiplier
However, we can add to

df = ∂f

∂x
dx+ ∂f

∂y
dy + ∂f

∂z
dz,

a multiplum of dφ, viz. λdφ, resulting in

df + λdφ = (∂f
∂z

+ λ
∂φ

∂x
)dx+ (∂f

∂y
+ λ

∂φ

∂y
)dy + (∂f

∂z
+ λ

∂φ

∂z
)dz = 0.

Our multiplier is chosen so that

∂f

∂z
+ λ

∂φ

∂z
= 0.

We need to remember that we took dx and dy to be arbitrary and thus we
must have

∂f

∂x
+ λ

∂φ

∂x
= 0,

and
∂f

∂y
+ λ

∂φ

∂y
= 0.

When all these equations are satisfied, df = 0. We have four unknowns, x, y, z
and λ. Actually we want only x, y, z, λ needs not to be determined, it is therefore
often called Lagrange’s undetermined multiplier. If we have a set of constraints
φk we have the equations

∂f

∂xi
+
∑
k

λk
∂φk
∂xi

= 0.

Setting up the Problem
In order to solve the above problem, we define the following Lagrangian function
to be minimized

L(λ, b,w) = 1
2w

Tw −
n∑
i=1

λi
[
yi(wTxi + b)− 1

]
,

where λi is a so-called Lagrange multiplier subject to the condition λi ≥ 0.
Taking the derivatives with respect to b and w we obtain

∂L
∂b

= −
∑
i

λiyi = 0,

and
∂L
∂w

= 0 = w −
∑
i

λiyixi.

6

Inserting these constraints into the equation for L we obtain

L =
∑
i

λi −
1
2

n∑
ij

λiλjyiyjx
T
i xj ,

subject to the constraints λi ≥ 0 and
∑
i λiyi = 0. We must in addition satisfy

the Karush-Kuhn-Tucker (KKT) condition

λi
[
yi(wTxi + b)− 1

]
∀i.

1. If λi > 0, then yi(wTxi + b) = 1 and we say that xi is on the boundary.

2. If yi(wTxi + b) > 1, we say xi is not on the boundary and we set λi = 0.

When λi > 0, the vectors xi are called support vectors. They are the vectors
closest to the line (or hyperplane) and define the margin M .

The problem to solve
We can rewrite

L =
∑
i

λi −
1
2

n∑
ij

λiλjyiyjx
T
i xj ,

and its constraints in terms of a matrix-vector problem where we minimize w.r.t.
λ the following problem

1
2λ

T


y1y1x

T
1 x1 y1y2x

T
1 x2 y1ynx

T
1 xn

y2y1x
T
2 x1 y2y2x

T
2 x2 y1ynx

T
2 xn

.

.
yny1x

T
nx1 yny2x

T
nx2 ynynx

T
nxn

λ− 1λ,

subject to yTλ = 0. Here we defined the vectors λ = [λ1, λ2, . . . , λn] and
y = [y1, y2, . . . , yn].

The last steps
Solving the above problem, yields the values of λi. To find the coefficients of
your hyperplane we need simply to compute

w =
∑
i

λiyixi.

With our vector w we can in turn find the value of the intercept b (here in two
dimensions) via

yi(wTxi + b) = 1,

resulting in
b = 1

yi
−wTxi,

7

https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions

or if we write it out in terms of the support vectors only, with Ns being their
number, we have

b = 1
Ns

∑
j∈Ns

(
yj −

n∑
i=1

λiyix
T
i xj

)
.

With our hyperplane coefficients we can use our classifier to assign any observation
by simply using

yi = sign(wTxi + b).

Below we discuss how to find the optimal values of λi. Before we proceed
however, we discuss now the so-called soft classifier.

A soft classifier
Till now, the margin is strictly defined by the support vectors. This defines what
is called a hard classifier, that is the margins are well defined.

Suppose now that classes overlap in feature space, as shown in the figure
here. One way to deal with this problem before we define the so-called kernel
approach, is to allow a kind of slack in the sense that we allow some points to
be on the wrong side of the margin.

We introduce thus the so-called slack variables ξ = [ξ1, x2, . . . , xn] and
modify our previous equation

yi(wTxi + b) = 1,

to
yi(wTxi + b) = 1− ξi,

with the requirement ξi ≥ 0. The total violation is now
∑
i ξ. The value ξi in the

constraint the last constraint corresponds to the amount by which the prediction
yi(wTxi + b) = 1 is on the wrong side of its margin. Hence by bounding the
sum

∑
i ξi, we bound the total amount by which predictions fall on the wrong

side of their margins.
Misclassifications occur when ξi > 1. Thus bounding the total sum by some

value C bounds in turn the total number of misclassifications.

Soft optmization problem
This has in turn the consequences that we change our optmization problem to
finding the minimum of

L = 1
2w

Tw −
n∑
i=1

λi
[
yi(wTxi + b)− (1− ξ)

]
+ C

n∑
i=1

ξi −
n∑
i=1

γiξi,

subject to
yi(wTxi + b) = 1− ξi ∀i,

with the requirement ξi ≥ 0.

8

Taking the derivatives with respect to b and w we obtain

∂L
∂b

= −
∑
i

λiyi = 0,

and
∂L
∂w

= 0 = w −
∑
i

λiyixi,

and
λi = C − γi ∀i.

Inserting these constraints into the equation for L we obtain the same equation
as before

L =
∑
i

λi −
1
2

n∑
ij

λiλjyiyjx
T
i xj ,

but now subject to the constraints λi ≥ 0,
∑
i λiyi = 0 and 0 ≤ λi ≤ C. We

must in addition satisfy the Karush-Kuhn-Tucker condition which now reads

λi
[
yi(wTxi + b)− (1− ξ)

]
= 0 ∀i,

γiξi = 0,

and
yi(wTxi + b)− (1− ξ) ≥ 0 ∀i.

Kernels and non-linearity
The cases we have studied till now, were all characterized by two classes with a
close to linear separability. The classifiers we have described so far find linear
boundaries in our input feature space. It is possible to make our procedure
more flexible by exploring the feature space using other basis expansions such as
higher-order polynomials, wavelets, splines etc.

If our feature space is not easy to separate, as shown in the figure here, we
can achieve a better separation by introducing more complex basis functions.
The ideal would be, as shown in the next figure, to, via a specific transformation
to obtain a separation between the classes which is almost linear.

The change of basis, from x → z = φ(x) leads to the same type of equa-
tions to be solved, except that we need to introduce for example a polynomial
transformation to a two-dimensional training set.

The equations
Suppose we define a polynomial transformation of degree two only (we continue
to live in a plane with xi and yi as variables)

z = φ(xi) =
(
x2
i , y

2
i ,
√

2xiyi
)
.

9

With our new basis, the equations we solved earlier are basically the same,
that is we have now (without the slack option for simplicity)

L =
∑
i

λi −
1
2

n∑
ij

λiλjyiyjz
T
i zj ,

subject to the constraints λi ≥ 0,
∑
i λiyi = 0, and for the support vectors

yi(wTzi + b) = 1 ∀i,

from which we also find b. To compute zTi zj we define the kernel K(xi,xj) as

K(xi,xj) = zTi zj = φ(xi)Tφ(xj).

For the above example, the kernel reads

K(xi,xj) = [x2
i , y

2
i ,
√

2xiyi]T
 x2

j

y2
j√

2xjyj

 = x2
ix

2
j + 2xixjyiyj + y2

i y
2
j .

We note that this is nothing but the dot product of the two original vectors
(xTi xj)2. Instead of thus computing the product in the Lagrangian of zTi zj we
simply compute the dot product (xTi xj)2.

This leads to the so-called kernel trick and the result leads to the same as
if we went through the trouble of performing the transformation φ(xi)Tφ(xj)
during the SVM calculations.

The problem to solve
Using our definition of the kernel We can rewrite again the Lagrangian

L =
∑
i

λi −
1
2

n∑
ij

λiλjyiyjx
T
i zj ,

subject to the constraints λi ≥ 0,
∑
i λiyi = 0 in terms of a convex optimization

problem

1
2λ

T


y1y1K(x1,x1) y1y2K(x1,x2) y1ynK(x1,xn)
y2y1K(x2,x1) y2y2(x2,x2) y1ynK(x2,xn)

.

.
yny1K(xn,x1) yny2K(xnx2) ynynK(xn,xn)

λ− 1λ,

subject to yTλ = 0. Here we defined the vectors λ = [λ1, λ2, . . . , λn] and
y = [y1, y2, . . . , yn]. If we add the slack constants this leads to the additional
constraint 0 ≤ λi ≤ C.

10

We can rewrite this (see the solutions below) in terms of a convex optimization
problem of the type

minλ
1
2λ

TPλ+ qTλ,

subject to Gλ � h ∧Aλ = f.

Below we discuss how to solve these equations. Here we note that the matrix P
has matrix elements pij = yiyjK(xi,xj). Given a kernel K and the targets yi
this matrix is easy to set up. The constraint yTλ = 0 leads to f = 0 and A = y.
How to set up the matrix G is discussed later. Here note that the inequalities
0 ≤ λi ≤ C can be split up into 0 ≤ λi and λi ≤ C. These two inequalities
define then the matrix G and the vector h.

Different kernels and Mercer’s theorem
There are several popular kernels being used. These are

1. Linear: K(x,y) = xTy,

2. Polynomial: K(x,y) = (xTy + γ)d,

3. Gaussian Radial Basis Function: K(x,y) = exp
(
−γ||x− y||2

)
,

4. Tanh: K(x,y) = tanh (xTy + γ),

and many other ones.
An important theorem for us is Mercer’s theorem. The theorem states that if

a kernel function K is symmetric, continuous and leads to a positive semi-definite
matrix P then there exists a function φ that maps xi and xj into another space
(possibly with much higher dimensions) such that

K(xi,xj) = φ(xi)Tφ(xj).

So you can use K as a kernel since you know φ exists, even if you don’t know
what φ is.

Note that some frequently used kernels (such as the Sigmoid kernel) don’t
respect all of Mercer’s conditions, yet they generally work well in practice.

The moons example
Mathematical optimization of convex functions
A mathematical (quadratic) optimization problem, or just optimization problem,
has the form

minλ
1
2λ

TPλ+ qTλ,

subject to Gλ � h ∧Aλ = f.

11

https://en.wikipedia.org/wiki/Mercer%27s_theorem

subject to some constraints for say a selected set i = 1, 2, . . . , n. In our case we
are optimizing with respect to the Lagrangian multipliers λi, and the vector
λ = [λ1, λ2, . . . , λn] is the optimization variable we are dealing with.

In our case we are particularly interested in a class of optimization problems
called convex optmization problems. In our discussion on gradient descent
methods we discussed at length the definition of a convex function.

Convex optimization problems play a central role in applied mathematics
and we recommend strongly Boyd and Vandenberghe’s text on the topics.

How do we solve these problems?
If we use Python as programming language and wish to venture beyond scikit-
learn, tensorflow and similar software which makes our lives so much easier,
we need to dive into the wonderful world of quadratic programming. We can, if
we wish, solve the minimization problem using say standard gradient methods
or conjugate gradient methods. However, these methods tend to exhibit a rather
slow converge. So, welcome to the promised land of quadratic programming.

The functions we need are contained in the quadratic programming package
CVXOPT and we need to import it together with numpy as

This will make our life much easier. You don’t need t write your own
optimizer.

A simple example
We remind ourselves about the general problem we want to solve

minx
1
2x

TPx+ qTx,

subject to Gx � h ∧Ax = f.

Let us show how to perform the optmization using a simple case. Assume
we want to optimize the following problem

minx
1
2x

2 + 5x+ 3y

subjectto
x, y ≥ 0
x+ 3y ≥ 15
2x+ 5y ≤ 100
3x+ 4y ≤ 80.

The minimization problem can be rewritten in terms of vectors and matrices as
(with x and y being the unknowns)

1
2

[
x
y

]T [1 0
0 0

] [
x
y

]
+
[
3
4

]T [
x
y

]
.

12

http://web.stanford.edu/~boyd/cvxbook/

Similarly, we can now set up the inequalities (we need to change ≥ to ≤ by
multiplying with −1 on bot sides) as the following matrix-vector equation

−1 0
0 −1
−1 −3
2 5
3 4


[
x
y

]
�


0
0
−15
100
80

 .
We have collapsed all the inequalities into a single matrix G. We see also that
our matrix

P =
[
1 0
0 0

]
is clearly positive semi-definite (all eigenvalues larger or equal zero). Finally, the
vector h is defined as

h =


0
0
−15
100
80

 .
Since we don’t have any equalities the matrix A is set to zero The following

code solves the equations for us

Back to the more realistic cases
We are now ready to return to our setup of the optmization problem for a more
realistic case. Introducing the slack parameter C we have

1
2λ

T


y1y1K(x1,x1) y1y2K(x1,x2) y1ynK(x1,xn)
y2y1K(x2,x1) y2y2K(x2,x2) y1ynK(x2,xn)

.

.
yny1K(xn,x1) yny2K(xnx2) ynynK(xn,xn)

λ− Iλ,

subject to yTλ = 0. Here we defined the vectors λ = [λ1, λ2, . . . , λn] and
y = [y1, y2, . . . , yn]. With the slack constants this leads to the additional
constraint 0 ≤ λi ≤ C.

code will be added

13

