Convolutional Neural Networks

Morten Hjorth-Jensen'?
'Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

May 29, 2020

Convolutional Neural Networks (recognizing images)

Convolutional neural networks (CNNs) were developed during the last decade
of the previous century, with a focus on character recognition tasks. Nowadays,
CNNs are a central element in the spectacular success of dee learning methods.
The success in for example image classifications have made them a central tool
for most machine learning practitioners.

CNNs are very similar to ordinary Neural Networks. They are made up
of neurons that have learnable weights and biases. Each neuron receives some
inputs, performs a dot product and optionally follows it with a non-linearity.
The whole network still expresses a single differentiable score function: from the
raw image pixels on one end to class scores at the other. And they still have
a loss function (for example Softmax) on the last (fully-connected) layer and
all the tips/tricks we developed for learning regular Neural Networks still apply
(back propagation, gradient descent etc etc).

What is the difference? CNN architectures make the explicit assump-
tion that the inputs are images, which allows us to encode certain
properties into the architecture. These then make the forward func-
tion more efficient to implement and vastly reduce the amount of
parameters in the network.

Here we provide only a superficial overview, for the more interested, we
recommend highly the course IN5400 — Machine Learning for Image Analysis
and the slides of CS231.

Another good read is the article here https://arxiv.org/pdf/1603.07285.
pdf.

Regular NNs don’t scale well to full images

As an example, consider an image of size 32 x 32 x 3 (32 wide, 32 high, 3 color
channels), so a single fully-connected neuron in a first hidden layer of a regular
Neural Network would have 32 x 32 x 3 = 3072 weights. This amount still seems

© 1999-2020, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0

license

https://www.uio.no/studier/emner/matnat/ifi/IN5400/index-eng.html
http://cs231n.github.io/convolutional-networks/
https://arxiv.org/pdf/1603.07285.pdf
https://arxiv.org/pdf/1603.07285.pdf

manageable, but clearly this fully-connected structure does not scale to larger
images. For example, an image of more respectable size, say 200 x 200 x 3, would
lead to neurons that have 200 x 200 x 3 = 120,000 weights.

We could have several such neurons, and the parameters would add up
quickly! Clearly, this full connectivity is wasteful and the huge number of
parameters would quickly lead to possible overfitting.

Os—7>0
SEOSTAON
S L=
O O
- “'//\\ . output layer
input layer

hidden layer 1 hidden layer 2

Figure 1: A regular 3-layer Neural Network.

3D volumes of neurons

Convolutional Neural Networks take advantage of the fact that the input consists
of images and they constrain the architecture in a more sensible way.

In particular, unlike a regular Neural Network, the layers of a CNN have
neurons arranged in 3 dimensions: width, height, depth. (Note that the word
depth here refers to the third dimension of an activation volume, not to the
depth of a full Neural Network, which can refer to the total number of layers in
a network.)

To understand it better, the above example of an image with an input volume
of activations has dimensions 32 x 32 x 3 (width, height, depth respectively).

The neurons in a layer will only be connected to a small region of the layer
before it, instead of all of the neurons in a fully-connected manner. Moreover,
the final output layer could for this specific image have dimensions 1 x 1 x 10,
because by the end of the CNN architecture we will reduce the full image into a
single vector of class scores, arranged along the depth dimension.

Layers used to build CNNs

A simple CNN is a sequence of layers, and every layer of a CNN transforms one
volume of activations to another through a differentiable function. We use three
main types of layers to build CNN architectures: Convolutional Layer, Pooling
Layer, and Fully-Connected Layer (exactly as seen in regular Neural Networks).
We will stack these layers to form a full CNN architecture.

A simple CNN for image classification could have the architecture:

A depth

Soasory e
— 0000 - 7
OOOOOK, vidih

Figure 2: A CNN arranges its neurons in three dimensions (width, height,
depth), as visualized in one of the layers. Every layer of a CNN transforms
the 3D input volume to a 3D output volume of neuron activations. In this
example, the red input layer holds the image, so its width and height would
be the dimensions of the image, and the depth would be 3 (Red, Green, Blue
channels).

e INPUT (32 x 32 x 3) will hold the raw pixel values of the image, in this
case an image of width 32, height 32, and with three color channels R,G,B.

e CONYV (convolutional)layer will compute the output of neurons that are
connected to local regions in the input, each computing a dot product
between their weights and a small region they are connected to in the input
volume. This may result in volume such as [32 x 32 x 12] if we decided to
use 12 filters.

e RELU layer will apply an elementwise activation function, such as the
max(0,z) thresholding at zero. This leaves the size of the volume un-
changed ([32 x 32 x 12]).

e POOL (pooling) layer will perform a downsampling operation along the
spatial dimensions (width, height), resulting in volume such as [16 x 16 x 12].

e FC (i.e. fully-connected) layer will compute the class scores, resulting in
volume of size [1 x 1 x 10], where each of the 10 numbers correspond to
a class score, such as among the 10 categories of the MNIST images we
considered above . As with ordinary Neural Networks and as the name
implies, each neuron in this layer will be connected to all the numbers in
the previous volume.

Transforming images

CNNs transform the original image layer by layer from the original pixel values
to the final class scores.

Observe that some layers contain parameters and other don’t. In particular,
the CNN layers perform transformations that are a function of not only the
activations in the input volume, but also of the parameters (the weights and biases
of the neurons). On the other hand, the RELU/POOL layers will implement
a fixed function. The parameters in the CONV /FC layers will be trained with

gradient descent so that the class scores that the CNN computes are consistent
with the labels in the training set for each image.

CNNs in brief

In summary:

e A CNN architecture is in the simplest case a list of Layers that transform
the image volume into an output volume (e.g. holding the class scores)

e There are a few distinct types of Layers (e.g. CONV/FC/RELU/POOL
are by far the most popular)

e Each Layer accepts an input 3D volume and transforms it to an output
3D volume through a differentiable function

e Each Layer may or may not have parameters (e.g. CONV/FC do, RELU/POOL
don’t)

e Each Layer may or may not have additional hyperparameters (e.g. CONV/FC/POOL
do, RELU doesn’t)

For more material on convolutional networks, we strongly recommend the course
IN5400 — Machine Learning for Image Analysis and the slides of CS231 which is
taught at Stanford University (consistently ranked as one of the top computer
science programs in the world). Michael Nielsen’s book is a must read, in
particular chapter 6 which deals with CNNs.

CNNs in more detail, building convolutional neural net-
works in Tensorflow and Keras

As discussed above, CNNs are neural networks built from the assumption that
the inputs to the network are 2D images. This is important because the number
of features or pixels in images grows very fast with the image size, and an
enormous number of weights and biases are needed in order to build an accurate
network.

As before, we still have our input, a hidden layer and an output. What’s
novel about convolutional networks are the convolutional and pooling layers
stacked in pairs between the input and the hidden layer. In addition, the data is
no longer represented as a 2D feature matrix, instead each input is a number of
2D matrices, typically 1 for each color dimension (Red, Green, Blue).

Setting it up

It means that to represent the entire dataset of images, we require a 4D matrix
or tensor. This tensor has the dimensions:

(ninput57 Npizels,widths Mpizels,height, depth)

https://www.uio.no/studier/emner/matnat/ifi/IN5400/index-eng.html
http://cs231n.github.io/convolutional-networks/
http://neuralnetworksanddeeplearning.com/chap6.html
http://neuralnetworksanddeeplearning.com/chap6.html

The MNIST dataset again

The MNIST dataset consists of grayscale images with a pixel size of 28 x 28,
meaning we require 28 x 28 = 724 weights to each neuron in the first hidden
layer.

If we were to analyze images of size 128 x 128 we would require 128 x 128 =
16384 weights to each neuron. Even worse if we were dealing with color images,
as most images are, we have an image matrix of size 128 x 128 for each color
dimension (Red, Green, Blue), meaning 3 times the number of weights = 49152
are required for every single neuron in the first hidden layer.

Strong correlations

Images typically have strong local correlations, meaning that a small part of
the image varies little from its neighboring regions. If for example we have an
image of a blue car, we can roughly assume that a small blue part of the image
is surrounded by other blue regions.

Therefore, instead of connecting every single pixel to a neuron in the first
hidden layer, as we have previously done with deep neural networks, we can
instead connect each neuron to a small part of the image (in all 3 RGB depth
dimensions). The size of each small area is fixed, and known as a receptive.

Layers of a CNN

The layers of a convolutional neural network arrange neurons in 3D: width,
height and depth. The input image is typically a square matrix of depth 3.

A convolution is performed on the image which outputs a 3D volume of
neurons. The weights to the input are arranged in a number of 2D matrices,
known as filters.

Each filter slides along the input image, taking the dot product between each
small part of the image and the filter, in all depth dimensions. This is then
passed through a non-linear function, typically the Rectified Linear (ReLu)
function, which serves as the activation of the neurons in the first convolutional
layer. This is further passed through a pooling layer, which reduces the size
of the convolutional layer, e.g. by taking the maximum or average across some
small regions, and this serves as input to the next convolutional layer.

Systematic reduction

By systematically reducing the size of the input volume, through convolution and
pooling, the network should create representations of small parts of the input,
and then from them assemble representations of larger areas. The final pooling
layer is flattened to serve as input to a hidden layer, such that each neuron in the
final pooling layer is connected to every single neuron in the hidden layer. This
then serves as input to the output layer, e.g. a softmax output for classification.

https://en.wikipedia.org/wiki/Receptive_field

Prerequisites: Collect and pre-process data
Importing Keras and Tensorflow

Using TensorFlow backend

We need to define model and architecture and choose cost function and optmizer.

import tensorflow as tf

class ConvolutionalNeuralNetworkTensorflow:

def __init__(
self,
X_train,
Y_train,
X_test,
Y_test,
n_filters=10,
n_neurons_connected=50,
n_categories=10,
receptive_field=3,
stride=1,
padding=1,
epochs=10,
batch_size=100,
eta=0.1,
1mbd=0.0) :

self.global_step = tf.Variable(O, dtype=tf.int32, trainable=False, name=’global_step’)

self.X_train = X_train
self.Y_train = Y_train
self.X_test = X_test
self.Y_test = Y_test

self.n_inputs, self.input_width, self.input_height, self.depth = X_train.shape

self.n_filters = n_filters

self.n_downsampled = int(self.input_width*self.input_height*n_filters / 4)
self.n_neurons_connected = n_neurons_connected

self.n_categories = n_categories

self.receptive_field = receptive_field
self.stride = stride

self.strides = [stride, stride, stride, stridel
self.padding = padding
self.epochs = epochs

self.batch_size batch_size

self.iterations = self.n_inputs // self.batch_size
self.eta = eta

self.lmbd = 1lmbd

self.create_placeholders()
self.create_CNN()
self.create_loss()
self.create_optimiser()
self.create_accuracy()

def create_placeholders(self):
with tf.name_scope(’data’):
self.X = tf.placeholder(tf.float32, shape=(None, self.input_width, self.input_height, self

self.Y = tf.placeholder(tf.float32, shape=(None, self.n_categories), name=’Y_data’)

def create_CNN(self):
with tf.name_scope(’CNN’):

Convolutional layer

self .W_conv = self.weight_variable([self.receptive_field, self.receptive_field, self.deptl
b_conv = self.weight_variable([self.n_filters], name=’conv’, dtype=tf.float32)

Z_conv tf.nn.conv2d(self.X, self.W_conv, self.strides, padding=’SAME’, name=’conv’) + b_
a_conv = tf.nn.relu(z_conv)

2x2 max pooling
a_pool = tf.nn.max_pool(a_conv, [1, 2, 2, 1], [1, 2, 2, 1], padding=’SAME’, name=’pool’)

Fully connected layer

a_pool_flat = tf.reshape(a_pool, [-1, self.n_downsampled])

self .W_fc = self.weight_variable([self.n_downsampled, self.n_neurons_connected], name=’fc’
b_fc = self.bias_variable([self.n_neurons_connected], name=’fc’, dtype=tf.float32)

a_fc = tf.nn.relu(tf.matmul (a_pool_flat, self.W_fc) + b_fc)

Output layer

self.W_out = self.weight_variable([self.n_neurons_connected, self.n_categories], name=’out
b_out = self.bias_variable([self.n_categories], name=’out’, dtype=tf.float32)

self.z_out = tf.matmul(a_fc, self.W_out) + b_out

def create_loss(self):
with tf.name_scope(’loss’):
softmax_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=self.Y, lc

regularizer_loss_conv = tf.nn.12_loss(self.W_conv)

regularizer_loss_fc = tf.nn.12_loss(self.W_fc)

regularizer_loss_out = tf.nn.12_loss(self.W_out)

regularizer_loss = self.lmbd*(regularizer_loss_conv + regularizer_loss_fc + regularizer_lc

self.loss = softmax_loss + regularizer_loss

def create_accuracy(self):
with tf.name_scope(’accuracy’):
probabilities = tf.nn.softmax(self.z_out)
predictions = tf.argmax(probabilities, 1)
labels = tf.argmax(self.Y, 1)

correct_predictions = tf.equal(predictions, labels)
correct_predictions = tf.cast(correct_predictions, tf.float32)
self.accuracy = tf.reduce_mean(correct_predictions)

def create_optimiser(self):
with tf.name_scope(’optimizer’):
self.optimizer = tf.train.GradientDescentOptimizer(learning rate=self.eta).minimize(self.]

def weight_variable(self, shape, name=’’, dtype=tf.float32):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name=name, dtype=dtype)

def bias_variable(self, shape, name=’’, dtype=tf.float32):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name=name, dtype=dtype)

def fit(self):
data_indices = np.arange(self.n_inputs)

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(self.epochs):

for j in range(self.iterations):
chosen_datapoints = np.random.choice(data_indices, size=self.batch_size, replace=I
batch_X, batch_Y = self.X_train[chosen_datapoints], self.Y_train[chosen_datapoints

sess.run([CNN.loss, CNN.optimizer],
feed_dict={CNN.X: batch_X,
CNN.Y: batch_Y})
accuracy = sess.run(CNN.accuracy,
feed_dict={CNN.X: batch_X,
CNN.Y: batch_Y})
step = sess.run(CNN.global_step)
self.train_loss, self.train_accuracy = sess.run([CNN.loss, CNN.accuracy],
feed_dict={CNN.X: self.X_train,
CNN.Y: self.Y_train})
self.test_loss, self.test_accuracy = sess.run([CNN.loss, CNN.accuracy],

feed_dict={CNN.X: self.X_test,
CNN.Y: self.Y_test})

Train the model

We need now to train the model, evaluate it and test its performance on test
data, and eventually include hyperparameters.

Visualizing the results

Running with Keras

Final part

Final visualization

Fun links
1. Self-Driving cars using a convolutional neural network

2. Abstract art using convolutional neural networks

https://arxiv.org/abs/1604.07316
https://deepdreamgenerator.com/

