
Data Analysis and Machine Learning:
Elements of Probability Theory and

Statistical Data Analysis

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

May 17, 2020

Domains and probabilities
Consider the following simple example, namely the tossing of two dice, resulting

in the following possible values

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

These values are called the domain. To this domain we have the corresponding
probabilities

{1/36, 2/36/, 3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36, 1/36}.

Tossing the dice
The numbers in the domain are the outcomes of the physical process of

tossing say two dice. We cannot tell beforehand whether the outcome is 3 or
5 or any other number in this domain. This defines the randomness of the
outcome, or unexpectedness or any other synonimous word which encompasses
the uncertitude of the final outcome.

The only thing we can tell beforehand is that say the outcome 2 has a certain
probability. If our favorite hobby is to spend an hour every evening throwing
dice and registering the sequence of outcomes, we will note that the numbers in
the above domain

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

appear in a random order. After 11 throws the results may look like

{10, 8, 6, 3, 6, 9, 11, 8, 12, 4, 5}.

c© 1999-2020, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license



Stochastic variables
Random variables are characterized by a domain which contains all

possible values that the random value may take. This domain has a
corresponding probability distribution function(PDF).

Stochastic variables and the main concepts, the discrete
case

There are two main concepts associated with a stochastic variable. The domain
is the set D = {x} of all accessible values the variable can assume, so that X ∈ D.
An example of a discrete domain is the set of six different numbers that we may
get by throwing of a dice, x ∈ {1, 2, 3, 4, 5, 6}.

The probability distribution function (PDF) is a function p(x) on the domain
which, in the discrete case, gives us the probability or relative frequency with
which these values of X occur

p(x) = Prob(X = x).

Stochastic variables and the main concepts, the continuous
case

In the continuous case, the PDF does not directly depict the actual probability.
Instead we define the probability for the stochastic variable to assume any value
on an infinitesimal interval around x to be p(x)dx. The continuous function p(x)
then gives us the density of the probability rather than the probability itself. The
probability for a stochastic variable to assume any value on a non-infinitesimal
interval [a, b] is then just the integral

Prob(a ≤ X ≤ b) =
∫ b

a

p(x)dx.

Qualitatively speaking, a stochastic variable represents the values of numbers
chosen as if by chance from some specified PDF so that the selection of a large
set of these numbers reproduces this PDF.

The cumulative probability
Of interest to us is the cumulative probability distribution function (CDF),

P (x), which is just the probability for a stochastic variable X to assume any
value less than x

P (x) = Prob(X ≤ x) =
∫ x

−∞
p(x′)dx′.

The relation between a CDF and its corresponding PDF is then

p(x) = d

dx
P (x).

2



Properties of PDFs
There are two properties that all PDFs must satisfy. The first one is positivity

(assuming that the PDF is normalized)

0 ≤ p(x) ≤ 1.

Naturally, it would be nonsensical for any of the values of the domain to occur
with a probability greater than 1 or less than 0. Also, the PDF must be
normalized. That is, all the probabilities must add up to unity. The probability
of “anything” to happen is always unity. For both discrete and continuous PDFs,
this condition is ∑

xi∈D
p(xi) = 1,∫

x∈D
p(x) dx = 1.

Important distributions, the uniform distribution
The first one is the most basic PDF; namely the uniform distribution

p(x) = 1
b− a

θ(x− a)θ(b− x). (1)

For a = 0 and b = 1 we have

p(x)dx = dx ∈ [0, 1].

The latter distribution is used to generate random numbers. For other PDFs,
one needs normally a mapping from this distribution to say for example the
exponential distribution.

Gaussian distribution
The second one is the Gaussian Distribution

p(x) = 1
σ
√

2π
exp (− (x− µ)2

2σ2 ),

with mean value µ and standard deviation σ. If µ = 0 and σ = 1, it is normally
called the standard normal distribution

p(x) = 1√
2π

exp (−x
2

2 ),

The following simple Python code plots the above distribution for different
values of µ and σ.

3



Exponential distribution
Another important distribution in science is the exponential distribution

p(x) = α exp−(αx).

Expectation values
Let h(x) be an arbitrary continuous function on the domain of the stochastic

variable X whose PDF is p(x). We define the expectation value of h with respect
to p as follows

〈h〉X ≡
∫
h(x)p(x) dx (2)

Whenever the PDF is known implicitly, like in this case, we will drop the index
X for clarity. A particularly useful class of special expectation values are the
moments. The n-th moment of the PDF p is defined as follows

〈xn〉 ≡
∫
xnp(x) dx

Stochastic variables and the main concepts, mean values
The zero-th moment 〈1〉 is just the normalization condition of p. The first

moment, 〈x〉, is called the mean of p and often denoted by the letter µ

〈x〉 = µ ≡
∫
xp(x)dx,

for a continuous distribution and

〈x〉 = µ ≡
N∑
i=1

xip(xi),

for a discrete distribution. Qualitatively it represents the centroid or the average
value of the PDF and is therefore simply called the expectation value of p(x).

Stochastic variables and the main concepts, central mo-
ments, the variance

A special version of the moments is the set of central moments, the n-th central
moment defined as

〈(x− 〈x〉)n〉 ≡
∫

(x− 〈x〉)np(x) dx

The zero-th and first central moments are both trivial, equal 1 and 0, respectively.
But the second central moment, known as the variance of p, is of particular

4



interest. For the stochastic variable X, the variance is denoted as σ2
X or Var(X)

σ2
X = Var(X) = 〈(x− 〈x〉)2〉 =

∫
(x− 〈x〉)2p(x)dx

=
∫ (

x2 − 2x〈x〉2 + 〈x〉2
)
p(x)dx

= 〈x2〉 − 2〈x〉〈x〉+ 〈x〉2

= 〈x2〉 − 〈x〉2

The square root of the variance, σ =
√
〈(x− 〈x〉)2〉 is called the standard

deviation of p. It is the RMS (root-mean-square) value of the deviation of the
PDF from its mean value, interpreted qualitatively as the “spread” of p around
its mean.

Probability Distribution Functions
The following table collects properties of probability distribution functions.

In our notation we reserve the label p(x) for the probability of a certain event,
while P (x) is the cumulative probability.

Discrete PDF Continuous PDF
Domain {x1, x2, x3, . . . , xN} [a, b]
Probability p(xi) p(x)dx
Cumulative Pi =

∑i
l=1 p(xl) P (x) =

∫ x
a
p(t)dt

Positivity 0 ≤ p(xi) ≤ 1 p(x) ≥ 0
Positivity 0 ≤ Pi ≤ 1 0 ≤ P (x) ≤ 1
Monotonic Pi ≥ Pj if xi ≥ xj P (xi) ≥ P (xj) if xi ≥ xj
Normalization PN = 1 P (b) = 1

Probability Distribution Functions
With a PDF we can compute expectation values of selected quantities such as

〈xk〉 =
N∑
i=1

xki p(xi),

if we have a discrete PDF or

〈xk〉 =
∫ b

a

xkp(x)dx,

in the case of a continuous PDF. We have already defined the mean value µ and
the variance σ2.

5



The three famous Probability Distribution Functions
There are at least three PDFs which one may encounter. These are the
Uniform distribution

p(x) = 1
b− a

Θ(x− a)Θ(b− x),

yielding probabilities different from zero in the interval [a, b].
The exponential distribution

p(x) = α exp (−αx),

yielding probabilities different from zero in the interval [0,∞) and with mean
value

µ =
∫ ∞

0
xp(x)dx =

∫ ∞
0

xα exp (−αx)dx = 1
α
,

with variance
σ2 =

∫ ∞
0

x2p(x)dx− µ2 = 1
α2 .

Probability Distribution Functions, the normal distribution
Finally, we have the so-called univariate normal distribution, or just the

normal distribution

p(x) = 1
b
√

2π
exp

(
− (x− a)2

2b2

)
with probabilities different from zero in the interval (−∞,∞). The integral∫∞
−∞ exp

(
−(x2)dx appears in many calculations, its value is

√
π, a result we will

need when we compute the mean value and the variance. The mean value is

µ =
∫ ∞

0
xp(x)dx = 1

b
√

2π

∫ ∞
−∞

x exp
(
− (x− a)2

2b2

)
dx,

which becomes with a suitable change of variables

µ = 1
b
√

2π

∫ ∞
−∞

b
√

2(a+ b
√

2y) exp−y2dy = a.

Probability Distribution Functions, the normal distribution
Similarly, the variance becomes

σ2 = 1
b
√

2π

∫ ∞
−∞

(x− µ)2 exp
(
− (x− a)2

2b2

)
dx,

and inserting the mean value and performing a variable change we obtain

6



σ2 = 1
b
√

2π

∫ ∞
−∞

b
√

2(b
√

2y)2 exp
(
−y2)dy = 2b2√

π

∫ ∞
−∞

y2 exp
(
−y2)dy,

and performing a final integration by parts we obtain the well-known result
σ2 = b2. It is useful to introduce the standard normal distribution as well,
defined by µ = a = 0, viz. a distribution centered around zero and with a
variance σ2 = 1, leading to

p(x) = 1√
2π

exp
(
−x

2

2

)
. (3)

Probability Distribution Functions, the cumulative distri-
bution

The exponential and uniform distributions have simple cumulative functions,
whereas the normal distribution does not, being proportional to the so-called
error function erf(x), given by

P (x) = 1√
2π

∫ x

−∞
exp

(
− t

2

2

)
dt,

which is difficult to evaluate in a quick way.

Probability Distribution Functions, other important distri-
bution
Some other PDFs which one encounters often in the natural sciences are the

binomial distribution

p(x) =
(
n
x

)
yx(1− y)n−x x = 0, 1, . . . , n,

where y is the probability for a specific event, such as the tossing of a coin
or moving left or right in case of a random walker. Note that x is a discrete
stochastic variable.

The sequence of binomial trials is characterized by the following definitions

• Every experiment is thought to consist of N independent trials.

• In every independent trial one registers if a specific situation happens or
not, such as the jump to the left or right of a random walker.

• The probability for every outcome in a single trial has the same value, for
example the outcome of tossing (either heads or tails) a coin is always 1/2.

7



Probability Distribution Functions, the binomial distribu-
tion

In order to compute the mean and variance we need to recall Newton’s binomial
formula

(a+ b)m =
m∑
n=0

(
m
n

)
anbm−n,

which can be used to show that
n∑
x=0

(
n
x

)
yx(1− y)n−x = (y + 1− y)n = 1,

the PDF is normalized to one. The mean value is

µ =
n∑
x=0

x

(
n
x

)
yx(1− y)n−x =

n∑
x=0

x
n!

x!(n− x)!y
x(1− y)n−x,

resulting in

µ =
n∑
x=0

x
(n− 1)!

(x− 1)!(n− 1− (x− 1))!y
x−1(1− y)n−1−(x−1),

which we rewrite as

µ = ny

n∑
ν=0

(
n− 1
ν

)
yν(1− y)n−1−ν = ny(y + 1− y)n−1 = ny.

The variance is slightly trickier to get. It reads σ2 = ny(1− y).

Probability Distribution Functions, Poisson’s distribution
Another important distribution with discrete stochastic variables x is the

Poisson model, which resembles the exponential distribution and reads

p(x) = λx

x! e
−λ x = 0, 1, . . . , ;λ > 0.

In this case both the mean value and the variance are easier to calculate,

µ =
∞∑
x=0

x
λx

x! e
−λ = λe−λ

∞∑
x=1

λx−1

(x− 1)! = λ,

and the variance is σ2 = λ.

8



Probability Distribution Functions, Poisson’s distribution
An example of applications of the Poisson distribution could be the counting

of the number of α-particles emitted from a radioactive source in a given time
interval. In the limit of n → ∞ and for small probabilities y, the binomial
distribution approaches the Poisson distribution. Setting λ = ny, with y the
probability for an event in the binomial distribution we can show that

lim
n→∞

(
n
x

)
yx(1− y)n−xe−λ =

∞∑
x=1

λx

x! e
−λ.

Meet the covariance!
An important quantity in a statistical analysis is the so-called covariance.
Consider the set {Xi} of n stochastic variables (not necessarily uncorrelated)

with the multivariate PDF P (x1, . . . , xn). The covariance of two of the stochastic
variables, Xi and Xj , is defined as follows

Cov(Xi, Xj) = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 (4)

=
∫
· · ·
∫

(xi − 〈xi〉)(xj − 〈xj〉)P (x1, . . . , xn) dx1 . . . dxn, (5)

with
〈xi〉 =

∫
· · ·
∫
xiP (x1, . . . , xn) dx1 . . . dxn.

Meet the covariance in matrix disguise
If we consider the above covariance as a matrix

Cij = Cov(Xi, Xj),

then the diagonal elements are just the familiar variances, Cii = Cov(Xi, Xi) =
Var(Xi). It turns out that all the off-diagonal elements are zero if the stochastic
variables are uncorrelated.

Covariance
Meet the covariance, uncorrelated events
Consider the stochastic variables Xi and Xj , (i 6= j). We have

Cov(Xi, Xj) = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉
= 〈xixj − xi〈xj〉 − 〈xi〉xj + 〈xi〉〈xj〉〉
= 〈xixj〉 − 〈xi〈xj〉〉 − 〈〈xi〉xj〉+ 〈〈xi〉〈xj〉〉
= 〈xixj〉 − 〈xi〉〈xj〉 − 〈xi〉〈xj〉+ 〈xi〉〈xj〉
= 〈xixj〉 − 〈xi〉〈xj〉

9



If Xi and Xj are independent (assuming i 6= j), we have that

〈xixj〉 = 〈xi〉〈xj〉,

leading to
Cov(Xi, Xj) = 0 (i 6= j).

Numerical experiments and the covariance
Now that we have constructed an idealized mathematical framework, let us try

to apply it to empirical observations. Examples of relevant physical phenomena
may be spontaneous decays of nuclei, or a purely mathematical set of numbers
produced by some deterministic mechanism. It is the latter we will deal with,
using so-called pseudo-random number generators. In general our observations
will contain only a limited set of observables. We remind the reader that a
stochastic process is a process that produces sequentially a chain of values

{x1, x2, . . . xk, . . . }.

Numerical experiments and the covariance
We will call these values our measurements and the entire set as our measured

sample. The action of measuring all the elements of a sample we will call a
stochastic experiment (since, operationally, they are often associated with results
of empirical observation of some physical or mathematical phenomena; precisely
an experiment). We assume that these values are distributed according to some
PDF pX(x), where X is just the formal symbol for the stochastic variable whose
PDF is pX(x). Instead of trying to determine the full distribution p we are often
only interested in finding the few lowest moments, like the mean µX and the
variance σX .

Numerical experiments and the covariance, actual situa-
tions

In practical situations however, a sample is always of finite size. Let that size
be n. The expectation value of a sample α, the sample mean, is then defined
as follows

〈xα〉 ≡
1
n

n∑
k=1

xα,k.

The sample variance is:

Var(x) ≡ 1
n

n∑
k=1

(xα,k − 〈xα〉)2,

with its square root being the standard deviation of the sample.

10



Numerical experiments and the covariance, our observables
You can think of the above observables as a set of quantities which define a

given experiment. This experiment is then repeated several times, say m times.
The total average is then

〈Xm〉 = 1
m

m∑
α=1

xα = 1
mn

∑
α,k

xα,k, (6)

where the last sums end at m and n. The total variance is

σ2
m = 1

mn2

m∑
α=1

(〈xα〉 − 〈Xm〉)2,

which we rewrite as

σ2
m = 1

m

m∑
α=1

n∑
kl=1

(xα,k − 〈Xm〉)(xα,l − 〈Xm〉). (7)

Numerical experiments and the covariance, the sample vari-
ance
We define also the sample variance σ2 of all mn individual experiments as

σ2 = 1
mn

m∑
α=1

n∑
k=1

(xα,k − 〈Xm〉)2. (8)

These quantities, being known experimental values or the results from our
calculations, may differ, in some cases significantly, from the similarly named
exact values for the mean value µX , the variance Var(X) and the covariance
Cov(X,Y ).

Numerical experiments and the covariance, central limit
theorem

The central limit theorem states that the PDF p̃(z) of the average ofm random
values corresponding to a PDF p(x) is a normal distribution whose mean is the
mean value of the PDF p(x) and whose variance is the variance of the PDF p(x)
divided by m, the number of values used to compute z.

The central limit theorem leads then to the well-known expression for the
standard deviation, given by

σm = σ√
m
.

In many cases the above estimate for the standard deviation, in particular if
correlations are strong, may be too simplistic. We need therefore a more precise
defintion of the error and the variance in our results.

11



Definition of Correlation Functions and Standard Deviation
Our estimate of the true average µX is the sample mean 〈Xm〉

µX ≈ Xm = 1
mn

m∑
α=1

n∑
k=1

xα,k.

We can then use Eq. (7)

σ2
m = 1

mn2

m∑
α=1

n∑
kl=1

(xα,k − 〈Xm〉)(xα,l − 〈Xm〉),

and rewrite it as

σ2
m = σ2

n
+ 2
mn2

m∑
α=1

n∑
k<l

(xα,k − 〈Xm〉)(xα,l − 〈Xm〉),

where the first term is the sample variance of all mn experiments divided by n
and the last term is nothing but the covariance which arises when k 6= l.

Definition of Correlation Functions and Standard Deviation
Our estimate of the true average µX is the sample mean 〈Xm〉
If the observables are uncorrelated, then the covariance is zero and we obtain

a total variance which agrees with the central limit theorem. Correlations may
often be present in our data set, resulting in a non-zero covariance. The first
term is normally called the uncorrelated contribution. Computationally the
uncorrelated first term is much easier to treat efficiently than the second. We
just accumulate separately the values x2 and x for every measurement x we
receive. The correlation term, though, has to be calculated at the end of the
experiment since we need all the measurements to calculate the cross terms.
Therefore, all measurements have to be stored throughout the experiment.

Definition of Correlation Functions and Standard Deviation
Let us analyze the problem by splitting up the correlation term into partial

sums of the form

fd = 1
nm

m∑
α=1

n−d∑
k=1

(xα,k − 〈Xm〉)(xα,k+d − 〈Xm〉),

The correlation term of the total variance can now be rewritten in terms of fd

2
mn2

m∑
α=1

n∑
k<l

(xα,k − 〈Xm〉)(xα,l − 〈Xm〉) = 2
n

n−1∑
d=1

fd

12



Definition of Correlation Functions and Standard Deviation
The value of fd reflects the correlation between measurements separated by

the distance d in the samples. Notice that for d = 0, f is just the sample variance,
σ2. If we divide fd by σ2, we arrive at the so called autocorrelation function

κd = fd
σ2 (9)

which gives us a useful measure of the correlation pair correlation starting always
at 1 for d = 0.

Definition of Correlation Functions and Standard Devia-
tion, sample variance
The sample variance of the mn experiments can now be written in terms of

the autocorrelation function

σ2
m = σ2

n
+ 2
n
· σ2

n−1∑
d=1

fd
σ2 =

(
1 + 2

n−1∑
d=1

κd

)
1
n
σ2 = τ

n
· σ2 (10)

and we see that σm can be expressed in terms of the uncorrelated sample
variance times a correction factor τ which accounts for the correlation between
measurements. We call this correction factor the autocorrelation time

τ = 1 + 2
n−1∑
d=1

κd (11)

For a correlation free experiment, τ equals 1.

Definition of Correlation Functions and Standard Deviation
From the point of view of Eq. (10) we can interpret a sequential correlation

as an effective reduction of the number of measurements by a factor τ . The
effective number of measurements becomes

neff = n

τ

To neglect the autocorrelation time τ will always cause our simple uncorrelated
estimate of σ2

m ≈ σ2/n to be less than the true sample error. The estimate
of the error will be too “good”. On the other hand, the calculation of the full
autocorrelation time poses an efficiency problem if the set of measurements is
very large. The solution to this problem is given by more practically oriented
methods like the blocking technique.

13



Code to compute the Covariance matrix and the Covariance

Random Numbers
Uniform deviates are just random numbers that lie within a specified range

(typically 0 to 1), with any one number in the range just as likely as any
other. They are, in other words, what you probably think random numbers are.
However, we want to distinguish uniform deviates from other sorts of random
numbers, for example numbers drawn from a normal (Gaussian) distribution of
specified mean and standard deviation. These other sorts of deviates are almost
always generated by performing appropriate operations on one or more uniform
deviates, as we will see in subsequent sections. So, a reliable source of random
uniform deviates, the subject of this section, is an essential building block for
any sort of stochastic modeling or Monte Carlo computer work.

Random Numbers, better name: pseudo random
numbers

A disclaimer is however appropriate. It should be fairly obvious that something
as deterministic as a computer cannot generate purely random numbers.

Numbers generated by any of the standard algorithms are in reality pseudo
random numbers, hopefully abiding to the following criteria:

• they produce a uniform distribution in the interval [0,1].

• correlations between random numbers are negligible

• the period before the same sequence of random numbers is repeated is as
large as possible and finally

• the algorithm should be fast.

Random number generator RNG
The most common random number generators are based on so-called Linear

congruential relations of the type

Ni = (aNi−1 + c)MOD(M),
which yield a number in the interval [0,1] through

xi = Ni/M

The number M is called the period and it should be as large as possible
and N0 is the starting value, or seed. The function MOD means the remainder,
that is if we were to evaluate (13)MOD(9), the outcome is the remainder of the
division 13/9, namely 4.

14



Random number generator RNG and periodic
outputs
The problem with such generators is that their outputs are periodic; they

will start to repeat themselves with a period that is at most M . If however the
parameters a and c are badly chosen, the period may be even shorter.

Consider the following example

Ni = (6Ni−1 + 7)MOD(5),

with a seedN0 = 2. This generator produces the sequence 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, ... . . . ,
i.e., a sequence with period 5. However, increasing M may not guarantee a
larger period as the following example shows

Ni = (27Ni−1 + 11)MOD(54),

which still, with N0 = 2, results in 11, 38, 11, 38, 11, 38, . . . , a period of just 2.

Random number generator RNG and its period
Typical periods for the random generators provided in the program library

are of the order of ∼ 109 or larger. Other random number generators which
have become increasingly popular are so-called shift-register generators. In these
generators each successive number depends on many preceding values (rather
than the last values as in the linear congruential generator). For example, you
could make a shift register generator whose lth number is the sum of the l − ith
and l − jth values with modulo M ,

Nl = (aNl−i + cNl−j)MOD(M).

Random number generator RNG, other examples
Such a generator again produces a sequence of pseudorandom numbers but

this time with a period much larger than M . It is also possible to construct
more elaborate algorithms by including more than two past terms in the sum
of each iteration. One example is the generator of Marsaglia and Zaman which
consists of two congruential relations

Nl = (Nl−3 −Nl−1)MOD(231 − 69), (12)

followed by
Nl = (69069Nl−1 + 1013904243)MOD(232), (13)

which according to the authors has a period larger than 294.

15

http://dl.acm.org/citation.cfm?id=187154


Random number generator RNG, other examples
Instead of using modular addition, we could use the bitwise exclusive-OR (⊕)

operation so that

Nl = (Nl−i)⊕ (Nl−j)

where the bitwise action of ⊕ means that if Nl−i = Nl−j the result is 0 whereas
if Nl−i 6= Nl−j the result is 1. As an example, consider the case where Nl−i = 6
and Nl−j = 11. The first one has a bit representation (using 4 bits only) which
reads 0110 whereas the second number is 1011. Employing the ⊕ operator yields
1101, or 23 + 22 + 20 = 13.

In Fortran90, the bitwise ⊕ operation is coded through the intrinsic function
IEOR(m,n) where m and n are the input numbers, while in C it is given by
m ∧ n.

Random number generator RNG, RAN0
We show here how the linear congruential algorithm can be implemented,

namely
Ni = (aNi−1)MOD(M).

However, since a and Ni−1 are integers and their multiplication could become
greater than the standard 32 bit integer, there is a trick via Schrage’s algorithm
which approximates the multiplication of large integers through the factorization

M = aq + r,

where we have defined

q = [M/a],

and
r = M MOD a.

where the brackets denote integer division. In the code below the numbers q and
r are chosen so that r < q.

Random number generator RNG, RAN0
To see how this works we note first that

(aNi−1)MOD(M) = (aNi−1 − [Ni−1/q]M)MOD(M), (14)

since we can add or subtract any integer multiple of M from aNi−1. The last
term [Ni−1/q]MMOD(M) is zero since the integer division [Ni−1/q] just yields
a constant which is multiplied with M .

16



Random number generator RNG, RAN0
We can now rewrite Eq. (14) as

(aNi−1)MOD(M) = (aNi−1 − [Ni−1/q](aq + r))MOD(M), (15)

which results in

(aNi−1)MOD(M) = (a(Ni−1 − [Ni−1/q]q)− [Ni−1/q]r)) MOD(M), (16)

yielding

(aNi−1)MOD(M) = (a(Ni−1MOD(q))− [Ni−1/q]r)) MOD(M). (17)

Random number generator RNG, RAN0
The term [Ni−1/q]r is always smaller or equal Ni−1(r/q) and with r < q we

obtain always a number smaller than Ni−1, which is smaller than M . And since
the number Ni−1MOD(q) is between zero and q − 1 then a(Ni−1MOD(q)) < aq.
Combined with our definition of q = [M/a] ensures that this term is also smaller
than M meaning that both terms fit into a 32-bit signed integer. None of these
two terms can be negative, but their difference could. The algorithm below adds
M if their difference is negative. Note that the program uses the bitwise ⊕
operator to generate the starting point for each generation of a random number.
The period of ran0 is ∼ 2.1× 109. A special feature of this algorithm is that is
should never be called with the initial seed set to 0.

Random number generator RNG, RAN0 code

Properties of Selected Random Number Generators
As mentioned previously, the underlying PDF for the generation of random

numbers is the uniform distribution, meaning that the probability for finding a
number x in the interval [0,1] is p(x) = 1.

A random number generator should produce numbers which are uniformly
distributed in this interval. The table shows the distribution of N = 10000
random numbers generated by the functions in the program library. We note in
this table that the number of points in the various intervals 0.0− 0.1, 0.1− 0.2
etc are fairly close to 1000, with some minor deviations.

Two additional measures are the standard deviation σ and the mean µ = 〈x〉.

17



Properties of Selected Random Number Generators
For the uniform distribution, the mean value µ is then

µ = 〈x〉 = 1
2

while the standard deviation is

σ =
√
〈x2〉 − µ2 = 1√

12
= 0.2886.

Properties of Selected Random Number Generators
The various random number generators produce results which agree rather

well with these limiting values.

x-bin ran0 ran1 ran2 ran3
0.0-0.1 1013 991 938 1047
0.1-0.2 1002 1009 1040 1030
0.2-0.3 989 999 1030 993
0.3-0.4 939 960 1023 937
0.4-0.5 1038 1001 1002 992
0.5-0.6 1037 1047 1009 1009
0.6-0.7 1005 989 1003 989
0.7-0.8 986 962 985 954
0.8-0.9 1000 1027 1009 1023
0.9-1.0 991 1015 961 1026
µ 0.4997 0.5018 0.4992 0.4990
σ 0.2882 0.2892 0.2861 0.2915

Simple demonstration of RNGs using python
The following simple Python code plots the distribution of the produced

random numbers using the linear congruential RNG employed by Python. The
trend displayed in the previous table is seen rather clearly.

Properties of Selected Random Number Generators
Since our random numbers, which are typically generated via a linear congruen-

tial algorithm, are never fully independent, we can then define an important test
which measures the degree of correlation, namely the so-called auto-correlation
function defined previously, see again Eq. (9). We rewrite it here as

Ck = fd
σ2 ,

18



with C0 = 1. Recall that σ2 = 〈x2
i 〉 − 〈xi〉2 and that

fd = 1
nm

m∑
α=1

n−d∑
k=1

(xα,k − 〈Xm〉)(xα,k+d − 〈Xm〉),

The non-vanishing of Ck for k 6= 0 means that the random numbers are not
independent. The independence of the random numbers is crucial in the evalua-
tion of other expectation values. If they are not independent, our assumption
for approximating σN is no longer valid.

Autocorrelation function
This program computes the autocorrelation function as discussed in the equation
on the previous slide for random numbers generated with the normal distribution
N(0, 1). As can be seen from the plot, the first point gives back the variance and
a value of one. For the remaining values we notice that there are still non-zero
values for the auto-correlation function.

Correlation function and which random number generators
should I use
The program here computes the correlation function for one of the standard

functions included with the c++ compiler.

Which RNG should I use?

• C++ has a class called random. The random class contains a large
selection of RNGs and is highly recommended. Some of these RNGs have
very large periods making it thereby very safe to use these RNGs in case
one is performing large calculations. In particular, the Mersenne twister
random number engine has a period of 219937.

• Add RNGs in Python

How to use the Mersenne generator
The following part of a c++ code (from project 4) sets up the uniform

distribution for x ∈ [0, 1].

Why blocking?
Statistical analysis.

• Monte Carlo simulations can be treated as computer experiments

19

http://www.cplusplus.com/reference/random/
http://www.cplusplus.com/reference/random/mersenne_twister_engine/
http://www.cplusplus.com/reference/random/mersenne_twister_engine/


• The results can be analysed with the same statistical tools as we would
use analysing experimental data.

• As in all experiments, we are looking for expectation values and an estimate
of how accurate they are, i.e., possible sources for errors.

A very good article which explains blocking is H. Flyvbjerg and H. G. Petersen,
Error estimates on averages of correlated data, Journal of Chemical Physics 91,
461-466 (1989).

Why blocking?
Statistical analysis.

• As in other experiments, Monte Carlo experiments have two classes of
errors:

– Statistical errors
– Systematical errors

• Statistical errors can be estimated using standard tools from statistics

• Systematical errors are method specific and must be treated differently
from case to case. (In VMC a common source is the step length or time
step in importance sampling)

Code to demonstrate the calculation of the autocorrelation
function
The following code computes the autocorrelation function, the covariance and
the standard deviation for standard RNG. The following file gives the code.

What is blocking?
Blocking.

• Say that we have a set of samples from a Monte Carlo experiment

• Assuming (wrongly) that our samples are uncorrelated our best estimate
of the standard deviation of the mean 〈M〉 is given by

σ =
√

1
n

(〈M2〉 − 〈M〉2)

• If the samples are correlated we can rewrite our results to show that

σ =
√

1 + 2τ/∆t
n

(〈M2〉 − 〈M〉2)

where τ is the correlation time (the time between a sample and the next uncor-
related sample) and ∆t is time between each sample

20

http://scitation.aip.org/content/aip/journal/jcp/91/1/10.1063/1.457480
http://scitation.aip.org/content/aip/journal/jcp/91/1/10.1063/1.457480
https://github.com/CompPhysics/ComputationalPhysics2/tree/gh-pages/doc/Programs/LecturePrograms/programs/Blocking/autocorrelation.cpp


What is blocking?
Blocking.

• If ∆t� τ our first estimate of σ still holds

• Much more common that ∆t < τ

• In the method of data blocking we divide the sequence of samples into
blocks

• We then take the mean 〈Mi〉 of block i = 1 . . . nblocks to calculate the total
mean and variance

• The size of each block must be so large that sample j of block i is not
correlated with sample j of block i+ 1

• The correlation time τ would be a good choice

What is blocking?
Blocking.

• Problem: We don’t know τ or it is too expensive to compute

• Solution: Make a plot of std. dev. as a function of blocksize

• The estimate of std. dev. of correlated data is too low → the error will
increase with increasing block size until the blocks are uncorrelated, where
we reach a plateau

• When the std. dev. stops increasing the blocks are uncorrelated

Implementation

• Do a Monte Carlo simulation, storing all samples to file

• Do the statistical analysis on this file, independently of your Monte Carlo
program

• Read the file into an array

• Loop over various block sizes

• For each block size nb, loop over the array in steps of nb taking the mean
of elements inb, . . . , (i+ 1)nb

• Take the mean and variance of the resulting array

• Write the results for each block size to file for later analysis

21



Actual implementation with code, main function
When the file gets large, it can be useful to write your data in binary mode
instead of ascii characters. The following python file reads data from file with
the output from every Monte Carlo cycle.

The Bootstrap method
The Bootstrap resampling method is also very popular. It is very simple:

1. Start with your sample of measurements and compute the sample variance
and the mean values

2. Then start again but pick in a random way the numbers in the sample and
recalculate the mean and the sample variance.

3. Repeat this K times.

It can be shown, see the article by Efron that it produces the correct standard
deviation.

This method is very useful for small ensembles of data points.

Bootstrapping
Given a set of N data, assume that we are interested in some observable θ which
may be estimated from that set. This observable can also be for example the
result of a fit based on all N raw data. Let us call the value of the observable
obtained from the original data set θ̂. One recreates from the sample repeatedly
other samples by choosing randomly N data out of the original set. This costs
essentially nothing, since we just recycle the original data set for the building of
new sets.

Bootstrapping, recipe
Let us assume we have done this K times and thus have K sets of N data values
each. Of course some values will enter more than once in the new sets. For
each of these sets one computes the observable θ resulting in values θk with
k = 1, ...,K. Then one determines

θ̃ = 1
K

K∑
k=1

θk,

and

sigma2
θ̃

= 1
K

K∑
k=1

(
θk − θ̃

)2
.

These are estimators for ∠θ〉 and its variance. They are not unbiased and
therefore θ̃ 6= θ̂ for finite K.

22

https://github.com/CompPhysics/MachineLearning/blob/master/doc/Programs/Sampling/analysis.py
https://projecteuclid.org/download/pdf_1/euclid.aos/1176344552


The difference is called bias and gives an idea on how far away the result may
be from the true ∠θ〉. As final result for the observable one quotes ∠θ〉 = θ̃± σθ̃
.

Bootstrapping, code
# Bootstrap

@timeFunction
def bootstrap(self, nBoots = 1000):

bootVec = np.zeros(nBoots)
for k in range(0,nBoots):

bootVec[k] = np.average(np.random.choice(self.data, len(self.data)))
self.bootAvg = np.average(bootVec)
self.bootVar = np.var(bootVec)
self.bootStd = np.std(bootVec)

Jackknife, code
# Jackknife

@timeFunction
def jackknife(self):

jackknVec = np.zeros(len(self.data))
for k in range(0,len(self.data)):

jackknVec[k] = np.average(np.delete(self.data, k))
self.jackknAvg = self.avg - (len(self.data) - 1) * (np.average(jackknVec) - self.avg)
self.jackknVar = float(len(self.data) - 1) * np.var(jackknVec)
self.jackknStd = np.sqrt(self.jackknVar)

23

https://github.com/CompPhysics/MachineLearning/blob/master/doc/Programs/Sampling/analysis.py
https://github.com/CompPhysics/MachineLearning/blob/master/doc/Programs/Sampling/analysis.py

