
Data Analysis and Machine Learning
Lectures: Optimization and Gradient

Methods

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

May 17, 2020

Optimization, the central part of any Machine Learning
algortithm
Almost every problem in machine learning and data science starts with a dataset
X, a model g(β), which is a function of the parameters β and a cost function
C(X, g(β)) that allows us to judge how well the model g(β) explains the obser-
vations X. The model is fit by finding the values of β that minimize the cost
function. Ideally we would be able to solve for β analytically, however this is
not possible in general and we must use some approximative/numerical method
to compute the minimum.

Revisiting our Logistic Regression case
In our discussion on Logistic Regression we studied the case of two classes, with
yi either 0 or 1. Furthermore we assumed also that we have only two parameters
β in our fitting, that is we defined probabilities

p(yi = 1|xi, β̂) = exp (β0 + β1xi)
1 + exp (β0 + β1xi)

,

p(yi = 0|xi, β̂) = 1− p(yi = 1|xi, β̂),

where β̂ are the weights we wish to extract from data, in our case β0 and β1.

c© 1999-2020, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

The equations to solve
Our compact equations used a definition of a vector ŷ with n elements yi, an
n×p matrix X̂ which contains the xi values and a vector p̂ of fitted probabilities
p(yi|xi, β̂). We rewrote in a more compact form the first derivative of the cost
function as

∂C(β̂)
∂β̂

= −X̂T (ŷ − p̂) .

If we in addition define a diagonal matrix Ŵ with elements p(yi|xi, β̂)(1−
p(yi|xi, β̂), we can obtain a compact expression of the second derivative as

∂2C(β̂)
∂β̂∂β̂T

= X̂T Ŵ X̂.

This defines what is called the Hessian matrix.

Solving using Newton-Raphson’s method
If we can set up these equations, Newton-Raphson’s iterative method is normally
the method of choice. It requires however that we can compute in an efficient
way the matrices that define the first and second derivatives.

Our iterative scheme is then given by

β̂new = β̂old −

(
∂2C(β̂)
∂β̂∂β̂T

)−1

β̂old

×

(
∂C(β̂)
∂β̂

)
β̂old

,

or in matrix form as

β̂new = β̂old −
(
X̂T Ŵ X̂

)−1
×
(
−X̂T (ŷ − p̂)

)
β̂old

.

The right-hand side is computed with the old values of β.
If we can compute these matrices, in particular the Hessian, the above is

often the easiest method to implement.

Brief reminder on Newton-Raphson’s method
Let us quickly remind ourselves how we derive the above method.

Perhaps the most celebrated of all one-dimensional root-finding routines
is Newton’s method, also called the Newton-Raphson method. This method
requires the evaluation of both the function f and its derivative f ′ at arbitrary
points. If you can only calculate the derivative numerically and/or your function
is not of the smooth type, we normally discourage the use of this method.

2

The equations
The Newton-Raphson formula consists geometrically of extending the tangent
line at a current point until it crosses zero, then setting the next guess to the
abscissa of that zero-crossing. The mathematics behind this method is rather
simple. Employing a Taylor expansion for x sufficiently close to the solution s,
we have

f(s) = 0 = f(x) + (s− x)f ′(x) + (s− x)2

2 f ′′(x) +

For small enough values of the function and for well-behaved functions, the
terms beyond linear are unimportant, hence we obtain

f(x) + (s− x)f ′(x) ≈ 0,

yielding
s ≈ x− f(x)

f ′(x) .

Having in mind an iterative procedure, it is natural to start iterating with

xn+1 = xn −
f(xn)
f ′(xn) .

Simple geometric interpretation
The above is Newton-Raphson’s method. It has a simple geometric interpretation,
namely xn+1 is the point where the tangent from (xn, f(xn)) crosses the x-axis.
Close to the solution, Newton-Raphson converges fast to the desired result.
However, if we are far from a root, where the higher-order terms in the series
are important, the Newton-Raphson formula can give grossly inaccurate results.
For instance, the initial guess for the root might be so far from the true root as
to let the search interval include a local maximum or minimum of the function.
If an iteration places a trial guess near such a local extremum, so that the first
derivative nearly vanishes, then Newton-Raphson may fail totally

Extending to more than one variable
Newton’s method can be generalized to systems of several non-linear equations
and variables. Consider the case with two equations

f1(x1, x2) = 0
f2(x1, x2) = 0,

which we Taylor expand to obtain

0 = f1(x1 + h1, x2 + h2) = f1(x1, x2) + h1∂f1/∂x1 + h2∂f1/∂x2 + . . .
0 = f2(x1 + h1, x2 + h2) = f2(x1, x2) + h1∂f2/∂x1 + h2∂f2/∂x2 + . . .

.

3

Defining the Jacobian matrix Ĵ we have

Ĵ =
(
∂f1/∂x1 ∂f1/∂x2
∂f2/∂x1 ∂f2/∂x2

)
,

we can rephrase Newton’s method as(
xn+1

1
xn+1

2

)
=
(
xn1
xn2

)
+
(
hn1
hn2

)
,

where we have defined(
hn1
hn2

)
= −Ĵ−1

(
f1(xn1 , xn2)
f2(xn1 , xn2)

)
.

We need thus to compute the inverse of the Jacobian matrix and it is to
understand that difficulties may arise in case Ĵ is nearly singular.

It is rather straightforward to extend the above scheme to systems of more
than two non-linear equations. In our case, the Jacobian matrix is given by the
Hessian that represents the second derivative of cost function.

Steepest descent
The basic idea of gradient descent is that a function F (x), x ≡ (x1, · · · , xn),
decreases fastest if one goes from x in the direction of the negative gradient
−∇F (x).

It can be shown that if

xk+1 = xk − γk∇F (xk),

with γk > 0.
For γk small enough, then F (xk+1) ≤ F (xk). This means that for a suffi-

ciently small γk we are always moving towards smaller function values, i.e a
minimum.

More on Steepest descent
The previous observation is the basis of the method of steepest descent, which is
also referred to as just gradient descent (GD). One starts with an initial guess
x0 for a minimum of F and computes new approximations according to

xk+1 = xk − γk∇F (xk), k ≥ 0.

The parameter γk is often referred to as the step length or the learning rate
within the context of Machine Learning.

4

The ideal
Ideally the sequence {xk}k=0 converges to a global minimum of the function F .
In general we do not know if we are in a global or local minimum. In the special
case when F is a convex function, all local minima are also global minima, so in
this case gradient descent can converge to the global solution. The advantage of
this scheme is that it is conceptually simple and straightforward to implement.
However the method in this form has some severe limitations:

In machine learing we are often faced with non-convex high dimensional
cost functions with many local minima. Since GD is deterministic we will get
stuck in a local minimum, if the method converges, unless we have a very good
intial guess. This also implies that the scheme is sensitive to the chosen initial
condition.

Note that the gradient is a function of x = (x1, · · · , xn) which makes it
expensive to compute numerically.

The sensitiveness of the gradient descent
The gradient descent method is sensitive to the choice of learning rate γk. This is
due to the fact that we are only guaranteed that F (xk+1) ≤ F (xk) for sufficiently
small γk. The problem is to determine an optimal learning rate. If the learning
rate is chosen too small the method will take a long time to converge and if it is
too large we can experience erratic behavior.

Many of these shortcomings can be alleviated by introducing randomness.
One such method is that of Stochastic Gradient Descent (SGD), see below.

Convex functions
Ideally we want our cost/loss function to be convex(concave).

First we give the definition of a convex set: A set C in Rn is said to be convex
if, for all x and y in C and all t ∈ (0, 1) , the point (1− t)x+ ty also belongs to
C. Geometrically this means that every point on the line segment connecting x
and y is in C as discussed below.

The convex subsets of R are the intervals of R. Examples of convex sets of
R2 are the regular polygons (triangles, rectangles, pentagons, etc...).

Convex function
Convex function: Let X ⊂ Rn be a convex set. Assume that the function
f : X → R is continuous, then f is said to be convex if

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)

for all x1, x2 ∈ X and for all t ∈ [0, 1]. If ≤ is replaced with a strict inequaltiy
in the definition, we demand x1 6= x2 and t ∈ (0, 1) then f is said to be strictly
convex. For a single variable function, convexity means that if you draw a
straight line connecting f(x1) and f(x2), the value of the function on the interval
[x1, x2] is always below the line as illustrated below.

5

Conditions on convex functions
In the following we state first and second-order conditions which ensures convexity
of a function f . We write Df to denote the domain of f , i.e the subset of Rn
where f is defined. For more details and proofs we refer to: S. Boyd and L.
Vandenberghe. Convex Optimization. Cambridge University Press.

First order condition. Suppose f is differentiable (i.e ∇f(x) is well defined
for all x in the domain of f). Then f is convex if and only if Df is a convex set
and

f(y) ≥ f(x) +∇f(x)T (y − x)

holds for all x, y ∈ Df . This condition means that for a convex function the
first order Taylor expansion (right hand side above) at any point a global under
estimator of the function. To convince yourself you can make a drawing of
f(x) = x2 + 1 and draw the tangent line to f(x) and note that it is always below
the graph.

Second order condition. Assume that f is twice differentiable, i.e the Hessian
matrix exists at each point in Df . Then f is convex if and only if Df is a convex
set and its Hessian is positive semi-definite for all x ∈ Df . For a single-variable
function this reduces to f ′′(x) ≥ 0. Geometrically this means that f has
nonnegative curvature everywhere.

This condition is particularly useful since it gives us an procedure for de-
termining if the function under consideration is convex, apart from using the
definition.

More on convex functions
The next result is of great importance to us and the reason why we are going
on about convex functions. In machine learning we frequently have to minimize
a loss/cost function in order to find the best parameters for the model we are
considering.

Ideally we want the global minimum (for high-dimensional models it is hard
to know if we have local or global minimum). However, if the cost/loss function
is convex the following result provides invaluable information:

Any minimum is global for convex functions. Consider the problem of
finding x ∈ Rn such that f(x) is minimal, where f is convex and differentiable.
Then, any point x∗ that satisfies ∇f(x∗) = 0 is a global minimum.

This result means that if we know that the cost/loss function is convex and
we are able to find a minimum, we are guaranteed that it is a global minimum.

6

http://stanford.edu/boyd/cvxbook/, 2004
http://stanford.edu/boyd/cvxbook/, 2004

Some simple problems
1. Show that f(x) = x2 is convex for x ∈ R using the definition of convexity.

Hint: If you re-write the definition, f is convex if the following holds for all
x, y ∈ Df and any λ ∈ [0, 1] λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y) ≥ 0.

2. Using the second order condition show that the following functions are
convex on the specified domain.

• f(x) = ex is convex for x ∈ R.
• g(x) = − ln(x) is convex for x ∈ (0,∞).

3. Let f(x) = x2 and g(x) = ex. Show that f(g(x)) and g(f(x)) is convex for
x ∈ R. Also show that if f(x) is any convex function than h(x) = ef(x) is
convex.

4. A norm is any function that satisfy the following properties

• f(αx) = |α|f(x) for all α ∈ R.
• f(x+ y) ≤ f(x) + f(y)
• f(x) ≤ 0 for all x ∈ Rn with equality if and only if x = 0

Using the definition of convexity, try to show that a function satisfying the
properties above is convex (the third condition is not needed to show this).

Revisiting our first homework
We will use linear regression as a case study for the gradient descent methods.
Linear regression is a great test case for the gradient descent methods discussed
in the lectures since it has several desirable properties such as:

1. An analytical solution (recall homework set 1).

2. The gradient can be computed analytically.

3. The cost function is convex which guarantees that gradient descent con-
verges for small enough learning rates

We revisit the example from homework set 1 where we had

yi = 5x2
i + 0.1ξi, i = 1, · · · , 100

with xi ∈ [0, 1] chosen randomly with a uniform distribution. Additionally ξi
represents stochastic noise chosen according to a normal distribution N (′,∞).
The linear regression model is given by

hβ(x) = ŷ = β0 + β1x,

such that
ŷi = β0 + β1xi.

7

Gradient descent example
Let y = (y1, · · · , yn)T , ŷ = (ŷ1, · · · , ŷn)T and β = (β0, β1)T

It is convenient to write ŷ = Xβ where X ∈ R100×2 is the design matrix
given by

X ≡

1 amp;x1
... amp;

...
1 amp;x100 amp;

 .
The loss function is given by

C(β) = ||Xβ−y||2 = ||Xβ||2−2yTXβ+||y||2 =
100∑
i=1

(β0+β1xi)2−2yi(β0+β1xi)+y2
i

and we want to find β such that C(β) is minimized.

The derivative of the cost/loss function
Computing ∂C(β)/∂β0 and ∂C(β)/∂β1 we can show that the gradient can be
written as

∇βC(β) = (∂C(β)/∂β0, ∂C(β)/∂β1)T = 2
[∑100

i=1 (β0 + β1xi − yi)∑100
i=1 (xi(β0 + β1xi)− yixi)

]
= 2XT (Xβ−y),

where X is the design matrix defined above.

The Hessian matrix
The Hessian matrix of C(β) is given by

Ĥ ≡

 ∂2C(β)
∂β2

0
amp; ∂

2C(β)
∂β0∂β1

∂2C(β)
∂β0∂β1

amp; ∂
2C(β)
∂β2

1
amp;

 = 2XTX.

This result implies that C(β) is a convex function since the matrix XTX always
is positive semi-definite.

Simple program
We can now write a program that minimizes C(β) using the gradient descent
method with a constant learning rate γ according to

βk+1 = βk − γ∇βC(βk), k = 0, 1, · · ·

We can use the expression we computed for the gradient and let use a β0 be
chosen randomly and let γ = 0.001. Stop iterating when ||∇βC(βk)|| ≤ ε = 10−8.

And finally we can compare our solution for β with the analytic result given
by β = (XTX)−1XTy.

8

Gradient Descent Example
Here our simple example

And a corresponding example using scikit-learn
Gradient descent and Ridge
We have also discussed Ridge regression where the loss function contains a
regularized term given by the L2 norm of β,

Cridge(β) = ||Xβ − y||2 + λ||β||2, λ ≥ 0.

In order to minimize Cridge(β) using GD we only have adjust the gradient as
follows

∇βCridge(β) = 2
[∑100

i=1 (β0 + β1xi − yi)∑100
i=1 (xi(β0 + β1xi)− yixi)

]
+2λ

[
β0
β1

]
= 2(XT (Xβ−y)+λβ).

We can easily extend our program to minimize Cridge(β) using gradient
descent and compare with the analytical solution given by

βridge =
(
XTX + λI2×2

)−1
XTy.

Program example for gradient descent with Ridge Regres-
sion
Using gradient descent methods, limitations
• Gradient descent (GD) finds local minima of our function. Since
the GD algorithm is deterministic, if it converges, it will converge to a
local minimum of our energy function. Because in ML we are often dealing
with extremely rugged landscapes with many local minima, this can lead
to poor performance.

• GD is sensitive to initial conditions. One consequence of the local
nature of GD is that initial conditions matter. Depending on where one
starts, one will end up at a different local minima. Therefore, it is very
important to think about how one initializes the training process. This is
true for GD as well as more complicated variants of GD.

• Gradients are computationally expensive to calculate for large
datasets. In many cases in statistics and ML, the energy function is a
sum of terms, with one term for each data point. For example, in linear
regression, E ∝

∑n
i=1(yi−wT ·xi)2; for logistic regression, the square error

is replaced by the cross entropy. To calculate the gradient we have to sum
over all n data points. Doing this at every GD step becomes extremely
computationally expensive. An ingenious solution to this, is to calculate
the gradients using small subsets of the data called “mini batches”. This
has the added benefit of introducing stochasticity into our algorithm.

9

• GD is very sensitive to choices of learning rates. GD is extremely
sensitive to the choice of learning rates. If the learning rate is very small,
the training process take an extremely long time. For larger learning rates,
GD can diverge and give poor results. Furthermore, depending on what
the local landscape looks like, we have to modify the learning rates to
ensure convergence. Ideally, we would adaptively choose the learning rates
to match the landscape.

• GD treats all directions in parameter space uniformly. Another
major drawback of GD is that unlike Newton’s method, the learning rate
for GD is the same in all directions in parameter space. For this reason,
the maximum learning rate is set by the behavior of the steepest direction
and this can significantly slow down training. Ideally, we would like to
take large steps in flat directions and small steps in steep directions. Since
we are exploring rugged landscapes where curvatures change, this requires
us to keep track of not only the gradient but second derivatives. The
ideal scenario would be to calculate the Hessian but this proves to be too
computationally expensive.

• GD can take exponential time to escape saddle points, even with random
initialization. As we mentioned, GD is extremely sensitive to initial
condition since it determines the particular local minimum GD would
eventually reach. However, even with a good initialization scheme, through
the introduction of randomness, GD can still take exponential time to
escape saddle points.

Stochastic Gradient Descent
Stochastic gradient descent (SGD) and variants thereof address some of the
shortcomings of the Gradient descent method discussed above.

The underlying idea of SGD comes from the observation that the cost function,
which we want to minimize, can almost always be written as a sum over n data
points {xi}ni=1,

C(β) =
n∑
i=1

ci(xi, β).

Computation of gradients
This in turn means that the gradient can be computed as a sum over i-gradients

∇βC(β) =
n∑
i

∇βci(xi, β).

Stochasticity/randomness is introduced by only taking the gradient on a
subset of the data called minibatches. If there are n data points and the size
of each minibatch is M , there will be n/M minibatches. We denote these
minibatches by Bk where k = 1, · · · , n/M .

10

SGD example
As an example, suppose we have 10 data points (x1, · · · ,x10) and we choose
to have M = 5 minibathces, then each minibatch contains two data points. In
particular we have B1 = (x1,x2), · · · , B5 = (x9,x10). Note that if you choose
M = 1 you have only a single batch with all data points and on the other
extreme, you may choose M = n resulting in a minibatch for each datapoint, i.e
Bk = xk.

The idea is now to approximate the gradient by replacing the sum over all
data points with a sum over the data points in one the minibatches picked at
random in each gradient descent step

∇βC(β) =
n∑
i=1
∇βci(xi, β)→

n∑
i∈Bk

∇βci(xi, β).

The gradient step
Thus a gradient descent step now looks like

βj+1 = βj − γj
n∑

i∈Bk

∇βci(xi, β)

where k is picked at random with equal probability from [1, n/M]. An
iteration over the number of minibathces (n/M) is commonly referred to as an
epoch. Thus it is typical to choose a number of epochs and for each epoch iterate
over the number of minibatches, as exemplified in the code below.

Simple example code
Taking the gradient only on a subset of the data has two important benefits.
First, it introduces randomness which decreases the chance that our opmization
scheme gets stuck in a local minima. Second, if the size of the minibatches
are small relative to the number of datapoints (M < n), the computation of
the gradient is much cheaper since we sum over the datapoints in the k − th
minibatch and not all n datapoints.

When do we stop?
A natural question is when do we stop the search for a new minimum? One
possibility is to compute the full gradient after a given number of epochs and
check if the norm of the gradient is smaller than some threshold and stop if true.
However, the condition that the gradient is zero is valid also for local minima, so
this would only tell us that we are close to a local/global minimum. However, we
could also evaluate the cost function at this point, store the result and continue
the search. If the test kicks in at a later stage we can compare the values of the
cost function and keep the β that gave the lowest value.

11

Slightly different approach
Another approach is to let the step length γj depend on the number of epochs
in such a way that it becomes very small after a reasonable time such that we
do not move at all.

As an example, let e = 0, 1, 2, 3, · · · denote the current epoch and let t0, t1 > 0
be two fixed numbers. Furthermore, let t = e ·m+ i where m is the number of
minibatches and i = 0, · · · ,m− 1. Then the function

γj(t; t0, t1) = t0
t+ t1

goes to zero as the number of epochs gets large. I.e. we start with a step length
γj(0; t0, t1) = t0/t1 which decays in time t.

In this way we can fix the number of epochs, compute β and evaluate the
cost function at the end. Repeating the computation will give a different result
since the scheme is random by design. Then we pick the final β that gives the
lowest value of the cost function.

Program for stochastic gradient
Challenge: try to write a similar code for a Logistic Regression case.

Momentum based GD
The stochastic gradient descent (SGD) is almost always used with a momentum
or inertia term that serves as a memory of the direction we are moving in
parameter space. This is typically implemented as follows

vt = γvt−1 + ηt∇θE(θt)
θt+1 = θt − vt, (1)

where we have introduced a momentum parameter γ, with 0 ≤ γ ≤ 1, and for
brevity we dropped the explicit notation to indicate the gradient is to be taken
over a different mini-batch at each step. We call this algorithm gradient descent
with momentum (GDM). From these equations, it is clear that vt is a running
average of recently encountered gradients and (1− γ)−1 sets the characteristic
time scale for the memory used in the averaging procedure. Consistent with this,
when γ = 0, this just reduces down to ordinary SGD as discussed earlier. An
equivalent way of writing the updates is

∆θt+1 = γ∆θt − ηt∇θE(θt),

where we have defined ∆θt = θt − θt−1.

12

More on momentum based approaches
Let us try to get more intuition from these equations. It is helpful to consider a
simple physical analogy with a particle of mass m moving in a viscous medium
with drag coefficient µ and potential E(w). If we denote the particle’s position
by w, then its motion is described by

m
d2w
dt2

+ µ
dw
dt

= −∇wE(w).

We can discretize this equation in the usual way to get

m
wt+∆t − 2wt + wt−∆t

(∆t)2 + µ
wt+∆t −wt

∆t = −∇wE(w).

Rearranging this equation, we can rewrite this as

∆wt+∆t = − (∆t)2

m+ µ∆t∇wE(w) + m

m+ µ∆t∆wt.

Momentum parameter
Notice that this equation is identical to previous one if we identify the position of
the particle, w, with the parameters θ. This allows us to identify the momentum
parameter and learning rate with the mass of the particle and the viscous drag
as:

γ = m

m+ µ∆t , η = (∆t)2

m+ µ∆t .

Thus, as the name suggests, the momentum parameter is proportional to
the mass of the particle and effectively provides inertia. Furthermore, in the
large viscosity/small learning rate limit, our memory time scales as (1− γ)−1 ≈
m/(µ∆t).

Why is momentum useful? SGD momentum helps the gradient descent
algorithm gain speed in directions with persistent but small gradients even in
the presence of stochasticity, while suppressing oscillations in high-curvature
directions. This becomes especially important in situations where the landscape
is shallow and flat in some directions and narrow and steep in others. It has
been argued that first-order methods (with appropriate initial conditions) can
perform comparable to more expensive second order methods, especially in the
context of complex deep learning models.

These beneficial properties of momentum can sometimes become even more
pronounced by using a slight modification of the classical momentum algorithm
called Nesterov Accelerated Gradient (NAG).

In the NAG algorithm, rather than calculating the gradient at the current
parameters, ∇θE(θt), one calculates the gradient at the expected value of the
parameters given our current momentum, ∇θE(θt + γvt−1). This yields the
NAG update rule

13

vt = γvt−1 + ηt∇θE(θt + γvt−1)
θt+1 = θt − vt. (2)

One of the major advantages of NAG is that it allows for the use of a larger
learning rate than GDM for the same choice of γ.

Second moment of the gradient
In stochastic gradient descent, with and without momentum, we still have to
specify a schedule for tuning the learning rates ηt as a function of time. As
discussed in the context of Newton’s method, this presents a number of dilemmas.
The learning rate is limited by the steepest direction which can change depending
on the current position in the landscape. To circumvent this problem, ideally
our algorithm would keep track of curvature and take large steps in shallow, flat
directions and small steps in steep, narrow directions. Second-order methods
accomplish this by calculating or approximating the Hessian and normalizing the
learning rate by the curvature. However, this is very computationally expensive
for extremely large models. Ideally, we would like to be able to adaptively change
the step size to match the landscape without paying the steep computational
price of calculating or approximating Hessians.

Recently, a number of methods have been introduced that accomplish this
by tracking not only the gradient, but also the second moment of the gradient.
These methods include AdaGrad, AdaDelta, RMS-Prop, and ADAM.

RMS prop
In RMS prop, in addition to keeping a running average of the first moment of
the gradient, we also keep track of the second moment denoted by st = E[g2

t].
The update rule for RMS prop is given by

gt = ∇θE(θ) (3)
st = βst−1 + (1− β)g2

t

θt+1 = θt − ηt
gt√

st + ε
,

where β controls the averaging time of the second moment and is typically
taken to be about β = 0.9, ηt is a learning rate typically chosen to be 10−3, and
ε ∼ 10−8 is a small regularization constant to prevent divergences. Multiplication
and division by vectors is understood as an element-wise operation. It is clear
from this formula that the learning rate is reduced in directions where the norm
of the gradient is consistently large. This greatly speeds up the convergence by
allowing us to use a larger learning rate for flat directions.

14

ADAM optimizer
A related algorithm is the ADAM optimizer. In ADAM, we keep a running
average of both the first and second moment of the gradient and use this
information to adaptively change the learning rate for different parameters. In
addition to keeping a running average of the first and second moments of the
gradient (i.e. mt = E[gt] and st = E[g2

t], respectively), ADAM performs an
additional bias correction to account for the fact that we are estimating the first
two moments of the gradient using a running average (denoted by the hats in the
update rule below). The update rule for ADAM is given by (where multiplication
and division are once again understood to be element-wise operations below)

gt = ∇θE(θ) (4)
mt = β1mt−1 + (1− β1)gt
st = β2st−1 + (1− β2)g2

t

m̂t = mt

1− βt1
ŝt = st

1− βt2

θt+1 = θt − ηt
m̂t√
ŝt + ε

,

(5)

where β1 and β2 set the memory lifetime of the first and second moment and
are typically taken to be 0.9 and 0.99 respectively, and η and ε are identical to
RMSprop.

Like in RMSprop, the effective step size of a parameter depends on the
magnitude of its gradient squared. To understand this better, let us rewrite this
expression in terms of the variance σ2

t = ŝt− (m̂t)2. Consider a single parameter
θt. The update rule for this parameter is given by

∆θt+1 = −ηt
m̂t√

σ2
t +m2

t + ε
.

Practical tips
• Randomize the data when making mini-batches. It is always impor-

tant to randomly shuffle the data when forming mini-batches. Otherwise,
the gradient descent method can fit spurious correlations resulting from
the order in which data is presented.

• Transform your inputs. Learning becomes difficult when our landscape
has a mixture of steep and flat directions. One simple trick for minimizing
these situations is to standardize the data by subtracting the mean and
normalizing the variance of input variables. Whenever possible, also

15

decorrelate the inputs. To understand why this is helpful, consider the
case of linear regression. It is easy to show that for the squared error cost
function, the Hessian of the energy matrix is just the correlation matrix
between the inputs. Thus, by standardizing the inputs, we are ensuring
that the landscape looks homogeneous in all directions in parameter space.
Since most deep networks can be viewed as linear transformations followed
by a non-linearity at each layer, we expect this intuition to hold beyond
the linear case.

• Monitor the out-of-sample performance. Always monitor the perfor-
mance of your model on a validation set (a small portion of the training
data that is held out of the training process to serve as a proxy for the test
set. If the validation error starts increasing, then the model is beginning to
overfit. Terminate the learning process. This early stopping significantly
improves performance in many settings.

• Adaptive optimization methods don’t always have good general-
ization. Recent studies have shown that adaptive methods such as ADAM,
RMSPorp, and AdaGrad tend to have poor generalization compared to
SGD or SGD with momentum, particularly in the high-dimensional limit
(i.e. the number of parameters exceeds the number of data points). Al-
though it is not clear at this stage why these methods perform so well
in training deep neural networks, simpler procedures like properly-tuned
SGD may work as well or better in these applications.

Geron’s text, see chapter 11, has several interesting discussions.

Automatic differentiation
Automatic differentiation (AD), also called algorithmic differentiation or com-
putational differentiation,is a set of techniques to numerically evaluate the
derivative of a function specified by a computer program. AD exploits the fact
that every computer program, no matter how complicated, executes a sequence
of elementary arithmetic operations (addition, subtraction, multiplication, divi-
sion, etc.) and elementary functions (exp, log, sin, cos, etc.). By applying the
chain rule repeatedly to these operations, derivatives of arbitrary order can be
computed automatically, accurately to working precision, and using at most a
small constant factor more arithmetic operations than the original program.

Automatic differentiation is neither:

• Symbolic differentiation, nor

• Numerical differentiation (the method of finite differences).

Symbolic differentiation can lead to inefficient code and faces the difficulty
of converting a computer program into a single expression, while numerical
differentiation can introduce round-off errors in the discretization process and
cancellation

16

https://en.wikipedia.org/wiki/Automatic_differentiation

Python has tools for so-called automatic differentiation. Consider the
following example

f(x) = sin
(
2πx+ x2)

which has the following derivative

f ′(x) = cos
(
2πx+ x2) (2π + 2x)

Using autograd we have

Using autograd
Here we experiment with what kind of functions Autograd is capable of finding
the gradient of. The following Python functions are just meant to illustrate what
Autograd can do, but please feel free to experiment with other, possibly more
complicated, functions as well.

Autograd with more complicated functions
To differentiate with respect to two (or more) arguments of a Python function,
Autograd need to know at which variable the function if being differentiated
with respect to.

Note that the grad function will not produce the true gradient of the function.
The true gradient of a function with two or more variables will produce a vector,
where each element is the function differentiated w.r.t a variable.

More complicated functions using the elements of their ar-
guments directly
Note that in this case, when sending an array as input argument, the output
from Autograd is another array. This is the true gradient of the function, as
opposed to the function in the previous example. By using arrays to represent
the variables, the output from Autograd might be easier to work with, as the
output is closer to what one could expect form a gradient-evaluting function.

Functions using mathematical functions from Numpy
More autograd
And with loops
Using recursion
Note that if n is equal to zero or one, Autograd will give an error message. This
message appears when the output is independent on input.

17

Unsupported functions
Autograd supports many features. However, there are some functions that is not
supported (yet) by Autograd.

Assigning a value to the variable being differentiated with respect to Here,
Autograd tells us that an ’ArrayBox’ does not support item assignment. The
item assignment is done when the program tries to assign x[2] to the value 3.
However, Autograd has implemented the computation of the derivative such that
this assignment is not possible.

The syntax a.dot(b) when finding the dot product
Here we are told that the ’dot’ function does not belong to Autograd’s version
of a Numpy array. To overcome this, an alternative syntax which also computed
the dot product can be used:

Recommended to avoid
The documentation recommends to avoid inplace operations such as

Standard steepest descent
Before we proceed, we would like to discuss the approach called the standard
Steepest descent, which again leads to us having to be able to compute a
matrix. It belongs to the class of Conjugate Gradient methods (CG).

The success of the CG method for finding solutions of non-linear problems is
based on the theory of conjugate gradients for linear systems of equations. It
belongs to the class of iterative methods for solving problems from linear algebra
of the type

Âx̂ = b̂.

In the iterative process we end up with a problem like

r̂ = b̂− Âx̂,

where r̂ is the so-called residual or error in the iterative process.
When we have found the exact solution, r̂ = 0.

Gradient method
The residual is zero when we reach the minimum of the quadratic equation

P (x̂) = 1
2 x̂

T Âx̂− x̂T b̂,

with the constraint that the matrix Â is positive definite and symmetric.
This defines also the Hessian and we want it to be positive definite.

18

https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Steepest descent method
We denote the initial guess for x̂ as x̂0. We can assume without loss of generality
that

x̂0 = 0,

or consider the system
Âẑ = b̂− Âx̂0,

instead.

Steepest descent method
One can show that the solution x̂ is also the unique minimizer of the quadratic

form
f(x̂) = 1

2 x̂
T Âx̂− x̂T x̂, x̂ ∈ Rn.

This suggests taking the first basis vector r̂1 (see below for definition) to be the
gradient of f at x̂ = x̂0, which equals

Âx̂0 − b̂,

and x̂0 = 0 it is equal −b̂.

Final expressions
We can compute the residual iteratively as

r̂k+1 = b̂− Âx̂k+1,

which equals
b̂− Â(x̂k + αkr̂k),

or
(b̂− Âx̂k)− αkÂr̂k,

which gives

αk = r̂Tk r̂k

r̂Tk Âr̂k

leading to the iterative scheme

x̂k+1 = x̂k − αkr̂k,

Code examples for steepest descent
Simple codes for steepest descent and conjugate gradient
using a 2× 2 matrix, in c++, Python code to come

19

The routine for the steepest descent method

Steepest descent example
And then as countor plot Find guesses Run it! What happened?

Conjugate gradient method
In the CG method we define so-called conjugate directions and two vectors ŝ

and t̂ are said to be conjugate if

ŝT Ât̂ = 0.

The philosophy of the CG method is to perform searches in various conjugate
directions of our vectors x̂i obeying the above criterion, namely

x̂Ti Âx̂j = 0.

Two vectors are conjugate if they are orthogonal with respect to this inner
product. Being conjugate is a symmetric relation: if ŝ is conjugate to t̂, then t̂
is conjugate to ŝ.

Conjugate gradient method
An example is given by the eigenvectors of the matrix

v̂Ti Âv̂j = λv̂Ti v̂j ,

which is zero unless i = j.

Conjugate gradient method
Assume now that we have a symmetric positive-definite matrix Â of size n×n.

At each iteration i+ 1 we obtain the conjugate direction of a vector

x̂i+1 = x̂i + αip̂i.

We assume that p̂i is a sequence of n mutually conjugate directions. Then the p̂i
form a basis of Rn and we can expand the solution Âx̂ = b̂ in this basis, namely

x̂ =
n∑
i=1

αip̂i.

20

Conjugate gradient method
The coefficients are given by

Ax =
n∑
i=1

αiApi = b.

Multiplying with p̂Tk from the left gives

p̂Tk Âx̂ =
n∑
i=1

αip̂
T
k Âp̂i = p̂Tk b̂,

and we can define the coefficients αk as

αk = p̂Tk b̂

p̂Tk Âp̂k

Conjugate gradient method and iterations
If we choose the conjugate vectors p̂k carefully, then we may not need all of

them to obtain a good approximation to the solution x̂. We want to regard the
conjugate gradient method as an iterative method. This will us to solve systems
where n is so large that the direct method would take too much time.

We denote the initial guess for x̂ as x̂0. We can assume without loss of
generality that

x̂0 = 0,

or consider the system
Âẑ = b̂− Âx̂0,

instead.

Conjugate gradient method
One can show that the solution x̂ is also the unique minimizer of the quadratic

form
f(x̂) = 1

2 x̂
T Âx̂− x̂T x̂, x̂ ∈ Rn.

This suggests taking the first basis vector p̂1 to be the gradient of f at x̂ = x̂0,
which equals

Âx̂0 − b̂,

and x̂0 = 0 it is equal −b̂. The other vectors in the basis will be conjugate to
the gradient, hence the name conjugate gradient method.

21

Conjugate gradient method
Let r̂k be the residual at the k-th step:

r̂k = b̂− Âx̂k.

Note that r̂k is the negative gradient of f at x̂ = x̂k, so the gradient descent
method would be to move in the direction r̂k. Here, we insist that the directions
p̂k are conjugate to each other, so we take the direction closest to the gradient
r̂k under the conjugacy constraint. This gives the following expression

p̂k+1 = r̂k −
p̂Tk Âr̂k

p̂Tk Âp̂k
p̂k.

Conjugate gradient method
We can also compute the residual iteratively as

r̂k+1 = b̂− Âx̂k+1,

which equals
b̂− Â(x̂k + αkp̂k),

or
(b̂− Âx̂k)− αkÂp̂k,

which gives

r̂k+1 = r̂k − Âp̂k,

Simple implementation of the Conjugate gradient algorithm

Broyden–Fletcher–Goldfarb–Shanno algorithm
The optimization problem is to minimize f(x) where x is a vector in Rn, and

f is a differentiable scalar function. There are no constraints on the values that
x can take.

The algorithm begins at an initial estimate for the optimal value x0 and
proceeds iteratively to get a better estimate at each stage.

The search direction pk at stage k is given by the solution of the analogue of
the Newton equation

Bkpk = −∇f(xk),
where Bk is an approximation to the Hessian matrix, which is updated

iteratively at each stage, and ∇f(xk) is the gradient of the function evaluated
at xk. A line search in the direction pk is then used to find the next point xk+1
by minimising

f(xk + αpk),
over the scalar α > 0.

22

