
Data Analysis and Machine Learning:
Linear Regression and more Advanced

Regression Analysis

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

May 19, 2020

Why Linear Regression (aka Ordinary Least Squares and
family)
Fitting a continuous function with linear parameterization in terms of the
parameters β.

• Method of choice for fitting a continuous function!

• Gives an excellent introduction to central Machine Learning features with
understandable pedagogical links to other methods like Neural Net-
works, Support Vector Machines etc

• Analytical expression for the fitting parameters β

• Analytical expressions for statistical propertiers like mean values, variances,
confidence intervals and more

• Analytical relation with probabilistic interpretations

• Easy to introduce basic concepts like bias-variance tradeoff, cross-validation,
resampling and regularization techniques and many other ML topics

• Easy to code! And links well with classification problems and logistic
regression and neural networks

• Allows for easy hands-on understanding of gradient descent methods

• and many more features

For more discussions of Ridge and Lasso regression, Wessel van Wieringen’s article
is highly recommended. Similarly, Mehta et al’s article is also recommended.

c© 1999-2020, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

https://arxiv.org/abs/1509.09169
https://arxiv.org/abs/1803.08823

Regression analysis, overarching aims
Regression modeling deals with the description of the sampling distribution of

a given random variable y and how it varies as function of another variable or
a set of such variables x = [x0, x1, . . . , xn−1]T . The first variable is called the
dependent, the outcome or the response variable while the set of variables
x is called the independent variable, or the predictor variable or the explanatory
variable.

A regression model aims at finding a likelihood function p(y|x), that is the
conditional distribution for y with a given x. The estimation of p(y|x) is made
using a data set with

• n cases i = 0, 1, 2, . . . , n− 1

• Response (target, dependent or outcome) variable yi with i = 0, 1, 2, . . . , n−
1

• p so-called explanatory (independent or predictor) variables xi = [xi0, xi1, . . . , xip−1]
with i = 0, 1, 2, . . . , n−1 and explanatory variables running from 0 to p−1.
See below for more explicit examples.

The goal of the regression analysis is to extract/exploit relationship between
y and x in or to infer causal dependencies, approximations to the likelihood
functions, functional relationships and to make predictions, making fits and
many other things.

Regression analysis, overarching aims II
Consider an experiment in which p characteristics of n samples are measured.

The data from this experiment, for various explanatory variables p are normally
represented by a matrix X.

The matrix X is called the design matrix. Additional information of the
samples is available in the form of y (also as above). The variable y is generally
referred to as the response variable. The aim of regression analysis is to explain
y in terms of X through a functional relationship like yi = f(Xi,∗). When
no prior knowledge on the form of f(·) is available, it is common to assume a
linear relationship between X and y. This assumption gives rise to the linear
regression model where β = [β0, . . . , βp−1]T are the regression parameters.

Linear regression gives us a set of analytical equations for the parameters βj .

Examples
In order to understand the relation among the predictors p, the set of data

n and the target (outcome, output etc) y, consider the model we discussed for
describing nuclear binding energies.

There we assumed that we could parametrize the data using a polynomial
approximation based on the liquid drop model. Assuming

BE(A) = a0 + a1A+ a2A
2/3 + a3A

−1/3 + a4A
−1,

2

we have five predictors, that is the intercept, the A dependent term, the A2/3

term and the A−1/3 and A−1 terms. This gives p = 0, 1, 2, 3, 4. Furthermore we
have n entries for each predictor. It means that our design matrix is a p × n
matrix X.

Here the predictors are based on a model we have made. A popular data
set which is widely encountered in ML applications is the so-called credit card
default data from Taiwan. The data set contains data on n = 30000 credit card
holders with predictors like gender, marital status, age, profession, education,
etc. In total there are 24 such predictors or attributes leading to a design matrix
of dimensionality 24× 30000. This is however a classification problem and we
will come back to it when we discuss Logistic Regression.

General linear models
Before we proceed let us study a case from linear algebra where we aim at

fitting a set of data y = [y0, y1, . . . , yn−1]. We could think of these data as a
result of an experiment or a complicated numerical experiment. These data are
functions of a series of variables x = [x0, x1, . . . , xn−1], that is yi = y(xi) with
i = 0, 1, 2, . . . , n − 1. The variables xi could represent physical quantities like
time, temperature, position etc. We assume that y(x) is a smooth function.

Since obtaining these data points may not be trivial, we want to use these
data to fit a function which can allow us to make predictions for values of y
which are not in the present set. The perhaps simplest approach is to assume
we can parametrize our function in terms of a polynomial of degree n− 1 with n
points, that is

y = y(x)→ y(xi) = ỹi + εi =
n−1∑
j=0

βjx
j
i + εi,

where εi is the error in our approximation.

Rewriting the fitting procedure as a linear algebra problem
For every set of values yi, xi we have thus the corresponding set of equations

y0 = β0 + β1x
1
0 + β2x

2
0 + · · ·+ βn−1x

n−1
0 + ε0

y1 = β0 + β1x
1
1 + β2x

2
1 + · · ·+ βn−1x

n−1
1 + ε1

y2 = β0 + β1x
1
2 + β2x

2
2 + · · ·+ βn−1x

n−1
2 + ε2

.

yn−1 = β0 + β1x
1
n−1 + β2x

2
n−1 + · · ·+ βn−1x

n−1
n−1 + εn−1.

3

https://www.sciencedirect.com/science/article/pii/S0957417407006719?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0957417407006719?via%3Dihub

Rewriting the fitting procedure as a linear algebra problem,
more details
Defining the vectors

y = [y0, y1, y2, . . . , yn−1]T ,

and
β = [β0, β1, β2, . . . , βn−1]T ,

and
ε = [ε0, ε1, ε2, . . . , εn−1]T ,

and the design matrix

X =


1 x1

0 x2
0 xn−1

0
1 x1

1 x2
1 xn−1

1
1 x1

2 x2
2 xn−1

2
.
1 x1

n−1 x2
n−1 xn−1

n−1


we can rewrite our equations as

y = Xβ + ε.

The above design matrix is called a Vandermonde matrix.

Generalizing the fitting procedure as a linear algebra prob-
lem
We are obviously not limited to the above polynomial expansions. We could

replace the various powers of x with elements of Fourier series or instead of xji
we could have cos (jxi) or sin (jxi), or time series or other orthogonal functions.
For every set of values yi, xi we can then generalize the equations to

y0 = β0x00 + β1x01 + β2x02 + · · ·+ βn−1x0n−1 + ε0

y1 = β0x10 + β1x11 + β2x12 + · · ·+ βn−1x1n−1 + ε1

y2 = β0x20 + β1x21 + β2x22 + · · ·+ βn−1x2n−1 + ε2

.

yi = β0xi0 + β1xi1 + β2xi2 + · · ·+ βn−1xin−1 + εi

.

yn−1 = β0xn−1,0 + β1xn−1,2 + β2xn−1,2 + · · ·+ βn−1xn−1,n−1 + εn−1.

Note that we have p = n here. The matrix is symmetric. This is
generally not the case!

4

https://en.wikipedia.org/wiki/Vandermonde_matrix

Generalizing the fitting procedure as a linear algebra prob-
lem
We redefine in turn the matrix X as

X =


x00 x01 x02 x0,n−1
x10 x11 x12 x1,n−1
x20 x21 x22 x2,n−1
.

xn−1,0 xn−1,1 xn−1,2 xn−1,n−1


and without loss of generality we rewrite again our equations as

y = Xβ + ε.

The left-hand side of this equation is kwown. Our error vector ε and the
parameter vector β are our unknown quantities. How can we obtain the optimal
set of βi values?

Optimizing our parameters
We have defined the matrix X via the equations

y0 = β0x00 + β1x01 + β2x02 + · · ·+ βn−1x0n−1 + ε0

y1 = β0x10 + β1x11 + β2x12 + · · ·+ βn−1x1n−1 + ε1

y2 = β0x20 + β1x21 + β2x22 + · · ·+ βn−1x2n−1 + ε1

.

yi = β0xi0 + β1xi1 + β2xi2 + · · ·+ βn−1xin−1 + ε1

.

yn−1 = β0xn−1,0 + β1xn−1,2 + β2xn−1,2 + · · ·+ βn−1xn−1,n−1 + εn−1.

As we noted above, we stayed with a system with the design matrixX ∈ Rn×n,
that is we have p = n. For reasons to come later (algorithmic arguments) we
will hereafter define our matrix as X ∈ Rn×p, with the predictors refering to
the column numbers and the entries n being the row elements.

Our model for the nuclear binding energies
In our introductory notes we looked at the so-called liquid drop model. Let us
remind ourselves about what we did by looking at the code.

We restate the parts of the code we are most interested in.
With β ∈ Rp×1, it means that we will hereafter write our equations for the

approximation as
ỹ = Xβ,

throughout these lectures.

5

https://compphysics.github.io/MachineLearning/doc/pub/How2ReadData/html/How2ReadData.html
https://en.wikipedia.org/wiki/Semi-empirical_mass_formula

Optimizing our parameters, more details
With the above we use the design matrix to define the approximation ỹ via

the unknown quantity β as
ỹ = Xβ,

and in order to find the optimal parameters βi instead of solving the above
linear algebra problem, we define a function which gives a measure of the spread
between the values yi (which represent hopefully the exact values) and the
parameterized values ỹi, namely

C(β) = 1
n

n−1∑
i=0

(yi − ỹi)2 = 1
n

{
(y − ỹ)T (y − ỹ)

}
,

or using the matrix X and in a more compact matrix-vector notation as

C(β) = 1
n

{(
y −XTβ

)T (
y −XTβ

)}
.

This function is one possible way to define the so-called cost function.
It is also common to define the function Q as

C(β) = 1
2n

n−1∑
i=0

(yi − ỹi)2
,

since when taking the first derivative with respect to the unknown parameters
β, the factor of 2 cancels out.

Interpretations and optimizing our parameters
The function

C(β) = 1
n

{
(y −Xβ)T (y −Xβ)

}
,

can be linked to the variance of the quantity yi if we interpret the latter as
the mean value. When linking (see the discussion below) with the maximum
likelihood approach below, we will indeed interpret yi as a mean value

yi = 〈yi〉 = β0xi,0 + β1xi,1 + β2xi,2 + · · ·+ βn−1xi,n−1 + εi,

where 〈yi〉 is the mean value. Keep in mind also that till now we have treated
yi as the exact value. Normally, the response (dependent or outcome) variable
yi the outcome of a numerical experiment or another type of experiment and is
thus only an approximation to the true value. It is then always accompanied
by an error estimate, often limited to a statistical error estimate given by the
standard deviation discussed earlier. In the discussion here we will treat yi as
our exact value for the response variable.

In order to find the parameters βi we will then minimize the spread of C(β),
that is we are going to solve the problem

min
β∈Rp

1
n

{
(y −Xβ)T (y −Xβ)

}
.

6

In practical terms it means we will require

∂C(β)
∂βj

= ∂

∂βj

[
1
n

n−1∑
i=0

(yi − β0xi,0 − β1xi,1 − β2xi,2 − · · · − βn−1xi,n−1)2

]
= 0,

which results in

∂C(β)
∂βj

= − 2
n

[
n−1∑
i=0

xij (yi − β0xi,0 − β1xi,1 − β2xi,2 − · · · − βn−1xi,n−1)
]

= 0,

or in a matrix-vector form as
∂C(β)
∂β

= 0 = XT (y −Xβ) .

Interpretations and optimizing our parameters
We can rewrite

∂C(β)
∂β

= 0 = XT (y −Xβ) ,

as
XTy = XTXβ,

and if the matrix XTX is invertible we have the solution

β =
(
XTX

)−1
XTy.

We note also that since our design matrix is defined asX ∈ Rn×p, the product
XTX ∈ Rp×p. In the above case we have that p� n, in our case p = 5 meaning
that we end up with inverting a small 5× 5 matrix. This is a rather common
situation, in many cases we end up with low-dimensional matrices to invert.
The methods discussed here and for many other supervised learning algorithms
like classification with logistic regression or support vector machines, exhibit
dimensionalities which allow for the usage of direct linear algebra methods such
as LU decomposition or Singular Value Decomposition (SVD) for finding
the inverse of the matrix XTX.

Small question: Do you think the example we have at hand here (the nuclear
binding energies) can lead to problems in inverting the matrix XTX? What
kind of problems can we expect?

Some useful matrix and vector expressions
The following matrix and vector relation will be useful here and for the rest
of the course. Vectors are always written as boldfaced lower case letters and
matrices as upper case boldfaced letters.

∂(bTa)
∂a

= b,

7

∂(aTAa)
∂a

= (A+AT)a,

∂tr(BA)
∂A

= BT ,

∂ log |A|
∂A

= (A−1)T .

Interpretations and optimizing our parameters
The residuals ε are in turn given by

ε = y − ỹ = y −Xβ,

and with
XT (y −Xβ) = 0,

we have
XT ε = XT (y −Xβ) = 0,

meaning that the solution for β is the one which minimizes the residuals. Later
we will link this with the maximum likelihood approach.

Let us now return to our nuclear binding energies and simply code the above
equations.

Own code for Ordinary Least Squares
It is rather straightforward to implement the matrix inversion and obtain the
parameters β. After having defined the matrix X we simply need to write
Alternatively, you can use the least squares functionality in Numpy as

And finally we plot our fit with and compare with data

Adding error analysis and training set up
We can easily test our fit by computing the R2 score that we discussed in connec-
tion with the functionality of ScikitLearnintheintroductoryslides.SincewearenotusingScikit−
LearnherewecandefineourownR2functionasandwewouldbeusingitas

We can easily add our MSE score as and finally the relative error as
We could also add the so-called Huber norm, which we defined as

Hδ(a) =
{

1
2a

2 for |a| ≤ δ,
δ(|a| − 1

2δ), otherwise.
,

with a = y − ỹ.

8

The χ2 function
Normally, the response (dependent or outcome) variable yi is the outcome

of a numerical experiment or another type of experiment and is thus only an
approximation to the true value. It is then always accompanied by an error
estimate, often limited to a statistical error estimate given by the standard
deviation discussed earlier. In the discussion here we will treat yi as our exact
value for the response variable.

Introducing the standard deviation σi for each measurement yi, we define
now the χ2 function (omitting the 1/n term) as

χ2(β) = 1
n

n−1∑
i=0

(yi − ỹi)2

σ2
i

= 1
n

{
(y − ỹ)T 1

Σ2
(y − ỹ)

}
,

where the matrix Σ is a diagonal matrix with σi as matrix elements.

The χ2 function
In order to find the parameters βi we will then minimize the spread of χ2(β)

by requiring

∂χ2(β)
∂βj

= ∂

∂βj

[
1
n

n−1∑
i=0

(
yi − β0xi,0 − β1xi,1 − β2xi,2 − · · · − βn−1xi,n−1

σi

)2
]

= 0,

which results in

∂χ2(β)
∂βj

= − 2
n

[
n−1∑
i=0

xij
σi

(
yi − β0xi,0 − β1xi,1 − β2xi,2 − · · · − βn−1xi,n−1

σi

)]
= 0,

or in a matrix-vector form as

∂χ2(β)
∂β

= 0 = AT (b−Aβ) .

where we have defined the matrix A = X/Σ with matrix elements aij = xij/σi
and the vector b with elements bi = yi/σi.

The χ2 function
We can rewrite

∂χ2(β)
∂β

= 0 = AT (b−Aβ) ,

as
AT b = ATAβ,

and if the matrix ATA is invertible we have the solution

β =
(
ATA

)−1
AT b.

9

The χ2 function
If we then introduce the matrix

H =
(
ATA

)−1
,

we have then the following expression for the parameters βj (the matrix elements
of H are hij)

βj =
p−1∑
k=0

hjk

n−1∑
i=0

yi
σi

xik
σi

=
p−1∑
k=0

hjk

n−1∑
i=0

biaik

We state without proof the expression for the uncertainty in the parameters βj
as (we leave this as an exercise)

σ2(βj) =
n−1∑
i=0

σ2
i

(
∂βj
∂yi

)2
,

resulting in

σ2(βj) =
(
p−1∑
k=0

hjk

n−1∑
i=0

aik

)(
p−1∑
l=0

hjl

n−1∑
m=0

aml

)
= hjj !

The χ2 function
The first step here is to approximate the function y with a first-order polyno-

mial, that is we write

y = y(x)→ y(xi) ≈ β0 + β1xi.

By computing the derivatives of χ2 with respect to β0 and β1 show that these
are given by

∂χ2(β)
∂β0

= −2
[

1
n

n−1∑
i=0

(
yi − β0 − β1xi

σ2
i

)]
= 0,

and
∂χ2(β)
∂β1

= − 2
n

[
n−1∑
i=0

xi

(
yi − β0 − β1xi

σ2
i

)]
= 0.

The χ2 function
For a linear fit (a first-order polynomial) we don’t need to invert a matrix!!

Defining

γ =
n−1∑
i=0

1
σ2
i

,

10

γx =
n−1∑
i=0

xi
σ2
i

,

γy =
n−1∑
i=0

(
yi
σ2
i

)
,

γxx =
n−1∑
i=0

xixi
σ2
i

,

γxy =
n−1∑
i=0

yixi
σ2
i

,

we obtain

β0 = γxxγy − γxγy
γγxx − γ2

x

,

β1 = γxyγ − γxγy
γγxx − γ2

x

.

This approach (different linear and non-linear regression) suffers often from
both being underdetermined and overdetermined in the unknown coefficients βi.
A better approach is to use the Singular Value Decomposition (SVD) method
discussed below. Or using Lasso and Ridge regression. See below.

Fitting an Equation of State for Dense Nuclear Matter
Before we continue, let us introduce yet another example. We are going to fit
the nuclear equation of state using results from many-body calculations. The
equation of state we have made available here, as function of density, has been
derived using modern nucleon-nucleon potentials with the addition of three-body
forces. This time the file is presented as a standard csv file.

The beginning of the Python code here is similar to what you have seen
before, with the same initializations and declarations. We use also pandas again,
rather extensively in order to organize our data.

The difference now is that we use Scikit-Learn’s regression tools instead
of our own matrix inversion implementation. Furthermore, we sneak in Ridge
regression (to be discussed below) which includes a hyperparameter λ, also to
be explained below.

The code
The above simple polynomial in density ρ gives an excellent fit to the data.

We note also that there is a small deviation between the standard OLS and
the Ridge regression at higher densities. We discuss this in more detail below.

11

https://www.sciencedirect.com/science/article/pii/S0370157399001106
https://www.sciencedirect.com/science/article/pii/S0370157399001106

Splitting our Data in Training and Test data
It is normal in essentially all Machine Learning studies to split the data in a
training set and a test set (sometimes also an additional validation set). Scikit-
Learn has an own function for this. There is no explicit recipe for how much
data should be included as training data and say test data. An accepted rule
of thumb is to use approximately 2/3 to 4/5 of the data as training data. We
will postpone a discussion of this splitting to the end of these notes and our
discussion of the so-called bias-variance tradeoff. Here we limit ourselves to
repeat the above equation of state fitting example but now splitting the data
into a training set and a test set.

The Boston housing data example
The Boston housing data set was originally a part of UCI Machine Learning
Repository and has been removed now. The data set is now included in Scikit-
Learn’s library. There are 506 samples and 13 feature (predictor) variables in
this data set. The objective is to predict the value of prices of the house using
the features (predictors) listed here.

The features/predictors are

1. CRIM: Per capita crime rate by town

2. ZN: Proportion of residential land zoned for lots over 25000 square feet

3. INDUS: Proportion of non-retail business acres per town

4. CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 other-
wise)

5. NOX: Nitric oxide concentration (parts per 10 million)

6. RM: Average number of rooms per dwelling

7. AGE: Proportion of owner-occupied units built prior to 1940

8. DIS: Weighted distances to five Boston employment centers

9. RAD: Index of accessibility to radial highways

10. TAX: Full-value property tax rate per USD10000

11. B: 1000(Bk − 0.63)2, where Bk is the proportion of [people of African
American descent] by town

12. LSTAT: Percentage of lower status of the population

13. MEDV: Median value of owner-occupied homes in USD 1000s

12

Housing data, the code
We start by importing the libraries and load the Boston Housing DataSet from
Scikit-Learn

Then we invoke Pandas and preprocess the data We can then visualize the
data

It is now useful to look at the correlation matrix From the above coorelation
plot we can see that MEDV is strongly correlated to LSTAT and RM. We see
also that RAD and TAX are stronly correlated, but we don’t include this in
our features together to avoid multi-colinearity

Now we start training our model We split the data into training and test sets
Then we use the linear regression functionality from Scikit-Learn

The singular value decomposition
The examples we have looked at so far are cases where we normally can invert

the matrix XTX. Using a polynomial expansion as we did both for the masses
and the fitting of the equation of state, leads to row vectors of the design matrix
which are essentially orthogonal due to the polynomial character of our model.
Obtaining the inverse of the design matrix is then often done via a so-called LU,
QR or Cholesky decomposition.

This may however not the be case in general and a standard matrix inver-
sion algorithm based on say LU, QR or Cholesky decomposition may lead to
singularities. We will see examples of this below.

There is however a way to partially circumvent this problem and also gain
some insight about the ordinary least squares approach.

This is given by the Singular Value Decomposition algorithm, perhaps
the most powerful linear algebra algorithm. Let us look at a different example
where we may have problems with the standard matrix inversion algorithm.
Thereafter we dive into the math of the SVD.

Linear Regression Problems
One of the typical problems we encounter with linear regression, in particular
when the matrix X (our so-called design matrix) is high-dimensional, are prob-
lems with near singular or singular matrices. The column vectors of X may be
linearly dependent, normally referred to as super-collinearity. This means that
the matrix may be rank deficient and it is basically impossible to to model the
data using linear regression. As an example, consider the matrix

X =


1 −1 2
1 0 1
1 2 −1
1 1 0


The columns of X are linearly dependent. We see this easily since the the

first column is the row-wise sum of the other two columns. The rank (more

13

correct, the column rank) of a matrix is the dimension of the space spanned by
the column vectors. Hence, the rank of X is equal to the number of linearly
independent columns. In this particular case the matrix has rank 2.

Super-collinearity of an (n × p)-dimensional design matrix X implies that
the inverse of the matrix XTX (the matrix we need to invert to solve the linear
regression equations) is non-invertible. If we have a square matrix that does not
have an inverse, we say this matrix singular. The example here demonstrates
this

X =
[

1 −1
1 −1

]
.

We see easily that det(X) = x11x22 − x12x21 = 1× (−1)− 1× (−1) = 0. Hence,
X is singular and its inverse is undefined. This is equivalent to saying that the
matrix X has at least an eigenvalue which is zero.

Fixing the singularity
If our design matrix X which enters the linear regression problem

β = (XTX)−1XTy, (1)

has linearly dependent column vectors, we will not be able to compute the inverse
of XTX and we cannot find the parameters (estimators) βi. The estimators
are only well-defined if (XTX)−1 exits. This is more likely to happen when the
matrix X is high-dimensional. In this case it is likely to encounter a situation
where the regression parameters βi cannot be estimated.

A cheap ad hoc approach is simply to add a small diagonal component to
the matrix to invert, that is we change

XTX →XTX + λI,

where I is the identity matrix. When we discuss Ridge regression this is actually
what we end up evaluating. The parameter λ is called a hyperparameter. More
about this later.

Basic math of the SVD
From standard linear algebra we know that a square matrixX can be diagonalized
if and only it is a so-called normal matrix, that is if X ∈ Rn×n we have
XXT = XTX or if X ∈ Cn×n we have XX† = X†X. The matrix has then a
set of eigenpairs

(λ1,u1), . . . , (λn,un), andtheeigenvaluesaregivenbythediagonalmatrixΣ = Diag(λ1, . . . , λn).

The matrix X can be written in terms of an orthogonal/unitary transformation
U

X = UΣV T ,

14

https://en.wikipedia.org/wiki/Normal_matrix

with UUT = I or UU † = I.
Not all square matrices are diagonalizable. A matrix like the one discussed

above
X =

[
1 −1
1 −1

]
is not diagonalizable, it is a so-called defective matrix. It is easy to see that the
condition XXT = XTX is not fulfilled.

The SVD, a Fantastic Algorithm
However, and this is the strength of the SVD algorithm, any general matrix X
can be decomposed in terms of a diagonal matrix and two orthogonal/unitary
matrices. The Singular Value Decompostion (SVD) theorem states that a general
m×n matrixX can be written in terms of a diagonal matrix Σ of dimensionality
n× n and two orthognal matrices U and V , where the first has dimensionality
m×m and the last dimensionality n× n. We have then

X = UΣV T

As an example, the above defective matrix can be decomposed as

X = 1√
2

[
1 1
1 −1

] [
2 0
0 0

]
1√
2

[
1 −1
1 1

]
= UΣV T ,

with eigenvalues σ1 = 2 and σ2 = 0. The SVD exits always!

Another Example
Consider the following matrix which can be SVD decomposed as

X = 1
15

14 2
4 22
16 13

 = 1
3

1 2 2
2 −1 1
2 1 −2

2 0
0 1
0 0

 1
5

[
3 4
4 −3

]
= UΣV T .

This is a 3 × 2 matrix which is decomposed in terms of a 3 × 3 matrix U ,
and a 2× 2 matrix V . It is easy to see that U and V are orthogonal (how?).

And the SVD decomposition (singular values) gives eigenvalues σi ≥ σi+1 for
all i and for dimensions larger than i = 2, the eigenvalues (singular values) are
zero.

In the general case, where our design matrix X has dimension n × p, the
matrix is thus decomposed into an n×n orthogonal matrix U , a p×p orthogonal
matrix V and a diagonal matrix Σ with r = min(n, p) singular values σi ≥ 0 on
the main diagonal and zeros filling the rest of the matrix. There are at most p
singular values assuming that n > p. In our regression examples for the nuclear
masses and the equation of state this is indeed the case, while for the Ising model
we have p > n. These are often cases that lead to near singular or singular
matrices.

15

https://en.wikipedia.org/wiki/Defective_matrix
https://en.wikipedia.org/wiki/Singular_value_decomposition

The columns of U are called the left singular vectors while the columns of V
are the right singular vectors.

Economy-size SVD
If we assume that n > p, then our matrix U has dimension n × n. The last
n− p columns of U become however irrelevant in our calculations since they are
multiplied with the zeros in Σ.

The economy-size decomposition removes extra rows or columns of zeros
from the diagonal matrix of singular values, Σ, along with the columns in either
U or V that multiply those zeros in the expression. Removing these zeros and
columns can improve execution time and reduce storage requirements without
compromising the accuracy of the decomposition.

If n > p, we keep only the first p columns of U and Σ has dimension p× p.
If p > n, then only the first n columns of V are computed and Σ has dimension
n × n. The n = p case is obvious, we retain the full SVD. In general the
economy-size SVD leads to less FLOPS and still conserving the desired accuracy.

Mathematical Properties
There are several interesting mathematical properties which will be relevant
when we are going to discuss the differences between say ordinary least squares
(OLS) and Ridge regression.

We have from OLS that the parameters of the linear approximation are given
by

ỹ = Xβ = X
(
XTX

)−1
XTy.

The matrix to invert can be rewritten in terms of our SVD decomposition as

XTX = V ΣTUTUΣV T .

Using the orthogonality properties of U we have

XTX = V ΣTΣV T = V DV T ,

with D being a diagonal matrix with values along the diagonal given by the
singular values squared.

This means that
(XTX)V = V D,

that is the eigenvectors of (XTX) are given by the columns of the right singular
matrix of X and the eigenvalues are the squared singular values. It is easy to
show (show this) that

(XXT)U = UD,

that is, the eigenvectors of (XX)T are the columns of the left singular matrix
and the eigenvalues are the same.

16

Going back to our OLS equation we have

Xβ = X
(
V DV T

)−1
XTy = UΣV T

(
V DV T

)−1 (UΣV T)Ty = UUTy.

We will come back to this expression when we discuss Ridge regression.

Ridge and LASSO Regression
Let us remind ourselves about the expression for the standard Mean Squared
Error (MSE) which we used to define our cost function and the equations for
the ordinary least squares (OLS) method, that is our optimization problem is

min
β∈Rp

1
n

{
(y −Xβ)T (y −Xβ)

}
.

or we can state it as

min
β∈Rp

1
n

n−1∑
i=0

(yi − ỹi)2 = 1
n
||y −Xβ||22,

where we have used the definition of a norm-2 vector, that is

||x||2 =
√∑

i

x2
i .

By minimizing the above equation with respect to the parameters β we
could then obtain an analytical expression for the parameters β. We can add
a regularization parameter λ by defining a new cost function to be optimized,
that is

min
β∈Rp

1
n
||y −Xβ||22 + λ||β||22

which leads to the Ridge regression minimization problem where we require
that ||β||22 ≤ t, where t is a finite number larger than zero. By defining

C(X,β) = 1
n
||y −Xβ||22 + λ||β||1,

we have a new optimization equation

min
β∈Rp

1
n
||y −Xβ||22 + λ||β||1

which leads to Lasso regression. Lasso stands for least absolute shrinkage and
selection operator.

Here we have defined the norm-1 as

||x||1 =
∑
i

|xi|.

17

More on Ridge Regression
Using the matrix-vector expression for Ridge regression,

C(X,β) = 1
n

{
(y −Xβ)T (y −Xβ)

}
+ λβTβ,

by taking the derivatives with respect to β we obtain then a slightly modified
matrix inversion problem which for finite values of λ does not suffer from
singularity problems. We obtain

βRidge =
(
XTX + λI

)−1
XTy,

with I being a p× p identity matrix with the constraint that

p−1∑
i=0

β2
i ≤ t,

with t a finite positive number.
We see that Ridge regression is nothing but the standard OLS with a modified

diagonal term added toXTX. The consequences, in particular for our discussion
of the bias-variance tradeoff are rather interesting.

Furthermore, if we use the result above in terms of the SVD decomposition
(our analysis was done for the OLS method), we had

(XXT)U = UD.

We can analyse the OLS solutions in terms of the eigenvectors (the columns)
of the right singular value matrix U as

Xβ = X
(
V DV T

)−1
XTy = UΣV T

(
V DV T

)−1 (UΣV T)Ty = UUTy

For Ridge regression this becomes

XβRidge = UΣV T
(
V DV T + λI

)−1 (UΣV T)Ty =
p−1∑
j=0

uju
T
j

σ2
j

σ2
j + λ

y,

with the vectors uj being the columns of U .

Interpreting the Ridge results
Since λ ≥ 0, it means that compared to OLS, we have

σ2
j

σ2
j + λ

≤ 1.

Ridge regression finds the coordinates of y with respect to the orthonormal
basis U , it then shrinks the coordinates by σ2

j

σ2
j

+λ . Recall that the SVD has
eigenvalues ordered in a descending way, that is σi ≥ σi+1.

18

For small eigenvalues σi it means that their contributions become less im-
portant, a fact which can be used to reduce the number of degrees of freedom.
Actually, calculating the variance of Xvj shows that this quantity is equal to
σ2
j /n. With a parameter λ we can thus shrink the role of specific parameters.

More interpretations
For the sake of simplicity, let us assume that the design matrix is orthonormal,
that is

XTX = (XTX)−1 = I.

In this case the standard OLS results in

βOLS = XTy =
p−1∑
i=0

uju
T
j y,

and

βRidge = (I + λI)−1
XTy = (1 + λ)−1

βOLS,

that is the Ridge estimator scales the OLS estimator by the inverse of a factor
1 + λ, and the Ridge estimator converges to zero when the hyperparameter goes
to infinity.

We will come back to more interpretations after we have gone through some
of the statistical analysis part.

For more discussions of Ridge and Lasso regression, Wessel van Wierin-
gen’s article is highly recommended. Similarly, Mehta et al’s article is also
recommended.

Codes for the SVD
The matrix X has columns that are linearly dependent. The first column is
the row-wise sum of the other two columns. The rank of a matrix (the column
rank) is the dimension of space spanned by the column vectors. The rank of
the matrix is the number of linearly independent columns, in this case just 2.
We see this from the singular values when running the above code. Running
the standard inversion algorithm for matrix inversion with XTX results in the
program terminating due to a singular matrix.

Where are we going?
Before we proceed, we need to rethink what we have been doing. In our eager
to fit the data, we have omitted several important elements in our regression
analysis. In what follows we will

1. look at statistical properties, including a discussion of mean values, variance
and the so-called bias-variance tradeoff

19

https://arxiv.org/abs/1509.09169
https://arxiv.org/abs/1509.09169
https://arxiv.org/abs/1803.08823

2. introduce resampling techniques like cross-validation, bootstrapping and
jackknife and more

This will allow us to link the standard linear algebra methods we have discussed
above to a statistical interpretation of the methods.

Resampling methods
Resampling methods are an indispensable tool in modern statistics. They

involve repeatedly drawing samples from a training set and refitting a model
of interest on each sample in order to obtain additional information about
the fitted model. For example, in order to estimate the variability of a linear
regression fit, we can repeatedly draw different samples from the training data,
fit a linear regression to each new sample, and then examine the extent to which
the resulting fits differ. Such an approach may allow us to obtain information
that would not be available from fitting the model only once using the original
training sample.

Two resampling methods are often used in Machine Learning analyses,

1. The bootstrap method

2. and Cross-Validation

In addition there are several other methods such as the Jackknife and the Blocking
methods. We will discuss in particular cross-validation and the bootstrap method.

Resampling approaches can be computationally expensive
Resampling approaches can be computationally expensive, because they involve

fitting the same statistical method multiple times using different subsets of
the training data. However, due to recent advances in computing power, the
computational requirements of resampling methods generally are not prohibitive.
In this chapter, we discuss two of the most commonly used resampling methods,
cross-validation and the bootstrap. Both methods are important tools in the
practical application of many statistical learning procedures. For example, cross-
validation can be used to estimate the test error associated with a given statistical
learning method in order to evaluate its performance, or to select the appropriate
level of flexibility. The process of evaluating a model’s performance is known as
model assessment, whereas the process of selecting the proper level of flexibility
for a model is known as model selection. The bootstrap is widely used.

Why resampling methods ?
Statistical analysis.

• Our simulations can be treated as computer experiments. This is particu-
larly the case for Monte Carlo methods

20

• The results can be analysed with the same statistical tools as we would
use analysing experimental data.

• As in all experiments, we are looking for expectation values and an estimate
of how accurate they are, i.e., possible sources for errors.

Statistical analysis

• As in other experiments, many numerical experiments have two classes of
errors:

– Statistical errors
– Systematical errors

• Statistical errors can be estimated using standard tools from statistics

• Systematical errors are method specific and must be treated differently
from case to case.

Statistics
The probability distribution function (PDF) is a function p(x) on the domain

which, in the discrete case, gives us the probability or relative frequency with
which these values of X occur:

p(x) = prob(X = x)

In the continuous case, the PDF does not directly depict the actual probability.
Instead we define the probability for the stochastic variable to assume any value
on an infinitesimal interval around x to be p(x)dx. The continuous function p(x)
then gives us the density of the probability rather than the probability itself. The
probability for a stochastic variable to assume any value on a non-infinitesimal
interval [a, b] is then just the integral:

prob(a ≤ X ≤ b) =
∫ b

a

p(x)dx

Qualitatively speaking, a stochastic variable represents the values of numbers
chosen as if by chance from some specified PDF so that the selection of a large
set of these numbers reproduces this PDF.

21

Statistics, moments
A particularly useful class of special expectation values are the moments. The

n-th moment of the PDF p is defined as follows:

〈xn〉 ≡
∫
xnp(x) dx

The zero-th moment 〈1〉 is just the normalization condition of p. The first
moment, 〈x〉, is called the mean of p and often denoted by the letter µ:

〈x〉 = µ ≡
∫
xp(x) dx

Statistics, central moments
A special version of the moments is the set of central moments, the n-th central

moment defined as:

〈(x− 〈x〉)n〉 ≡
∫

(x− 〈x〉)np(x) dx

The zero-th and first central moments are both trivial, equal 1 and 0, respectively.
But the second central moment, known as the variance of p, is of particular
interest. For the stochastic variable X, the variance is denoted as σ2

X or var(X):

σ2
X = var(X) = 〈(x− 〈x〉)2〉 =

∫
(x− 〈x〉)2p(x) dx (2)

=
∫ (

x2 − 2x〈x〉2 + 〈x〉2
)
p(x) dx (3)

= 〈x2〉 − 2〈x〉〈x〉+ 〈x〉2 (4)
= 〈x2〉 − 〈x〉2 (5)

The square root of the variance, σ =
√
〈(x− 〈x〉)2〉 is called the standard

deviation of p. It is clearly just the RMS (root-mean-square) value of the
deviation of the PDF from its mean value, interpreted qualitatively as the spread
of p around its mean.

Statistics, covariance
Another important quantity is the so called covariance, a variant of the

above defined variance. Consider again the set {Xi} of n stochastic variables
(not necessarily uncorrelated) with the multivariate PDF P (x1, . . . , xn). The
covariance of two of the stochastic variables, Xi and Xj , is defined as follows:

cov(Xi, Xj) ≡ 〈(xi − 〈xi〉)(xj − 〈xj〉)〉

=
∫
· · ·
∫

(xi − 〈xi〉)(xj − 〈xj〉)P (x1, . . . , xn) dx1 . . . dxn (6)

with
〈xi〉 =

∫
· · ·
∫
xi P (x1, . . . , xn) dx1 . . . dxn

22

Statistics, more covariance
If we consider the above covariance as a matrix Cij = cov(Xi, Xj), then the

diagonal elements are just the familiar variances, Cii = cov(Xi, Xi) = var(Xi).
It turns out that all the off-diagonal elements are zero if the stochastic variables
are uncorrelated. This is easy to show, keeping in mind the linearity of the
expectation value. Consider the stochastic variables Xi and Xj , (i 6= j):

cov(Xi, Xj) = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 (7)
= 〈xixj − xi〈xj〉 − 〈xi〉xj + 〈xi〉〈xj〉〉 (8)
= 〈xixj〉 − 〈xi〈xj〉〉 − 〈〈xi〉xj〉+ 〈〈xi〉〈xj〉〉 (9)
= 〈xixj〉 − 〈xi〉〈xj〉 − 〈xi〉〈xj〉+ 〈xi〉〈xj〉 (10)
= 〈xixj〉 − 〈xi〉〈xj〉 (11)

Covariance example
Suppose we have defined three vectors x̂, ŷ, ẑ with n elements each. The covari-
ance matrix is defined as

Σ̂ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 ,
where for example

σxy = 1
n

n−1∑
i=0

(xi − x)(yi − y).

The Numpy function np.cov calculates the covariance elements using the
factor 1/(n− 1) instead of 1/n since it assumes we do not have the exact mean
values.

The following simple function uses the np.vstack function which takes each
vector of dimension 1× n and produces a 3× n matrix Ŵ

Ŵ =


x0 y0 z0
x1 y1 z1
x2 y2 z2
.
xn−2 yn−2 zn−2
xn−1 yn−1 zn−1

 ,

which in turn is converted into into the 3× 3 covariance matrix Σ̂ via the
Numpy function np.cov(). We note that we can also calculate the mean value of
each set of samples x̂ etc using the Numpy function np.mean(x). We can also
extract the eigenvalues of the covariance matrix through the np.linalg.eig()
function.

23

Covariance in numpy
Statistics, independent variables

IfXi andXj are independent, we get 〈xixj〉 = 〈xi〉〈xj〉, resulting in cov(Xi, Xj) =
0 (i 6= j).

Also useful for us is the covariance of linear combinations of stochastic
variables. Let {Xi} and {Yi} be two sets of stochastic variables. Let also {ai}
and {bi} be two sets of scalars. Consider the linear combination:

U =
∑
i

aiXi V =
∑
j

bjYj

By the linearity of the expectation value

cov(U, V) =
∑
i,j

aibjcov(Xi, Yj)

Statistics, more variance
Now, since the variance is just var(Xi) = cov(Xi, Xi), we get the variance of

the linear combination U =
∑
i aiXi:

var(U) =
∑
i,j

aiajcov(Xi, Xj) (12)

And in the special case when the stochastic variables are uncorrelated, the
off-diagonal elements of the covariance are as we know zero, resulting in:

var(U) =
∑
i

a2
i cov(Xi, Xi) =

∑
i

a2
i var(Xi)

var(
∑
i

aiXi) =
∑
i

a2
i var(Xi)

which will become very useful in our study of the error in the mean value of a
set of measurements.

Statistics and stochastic processes
A stochastic process is a process that produces sequentially a chain of values:

{x1, x2, . . . xk, . . . }.

We will call these values our measurements and the entire set as our measured
sample. The action of measuring all the elements of a sample we will call a
stochastic experiment since, operationally, they are often associated with results
of empirical observation of some physical or mathematical phenomena; precisely
an experiment. We assume that these values are distributed according to some
PDF pX(x), where X is just the formal symbol for the stochastic variable whose
PDF is pX(x). Instead of trying to determine the full distribution p we are often
only interested in finding the few lowest moments, like the mean µX and the
variance σX .

24

Statistics and sample variables
In practical situations a sample is always of finite size. Let that size be n.

The expectation value of a sample, the sample mean, is then defined as follows:

x̄n ≡
1
n

n∑
k=1

xk

The sample variance is:

var(x) ≡ 1
n

n∑
k=1

(xk − x̄n)2

its square root being the standard deviation of the sample. The sample covariance
is:

cov(x) ≡ 1
n

∑
kl

(xk − x̄n)(xl − x̄n)

Statistics, sample variance and covariance
Note that the sample variance is the sample covariance without the cross

terms. In a similar manner as the covariance in Eq. (6) is a measure of the
correlation between two stochastic variables, the above defined sample covariance
is a measure of the sequential correlation between succeeding measurements of a
sample.

These quantities, being known experimental values, differ significantly from
and must not be confused with the similarly named quantities for stochastic
variables, mean µX , variance var(X) and covariance cov(X,Y).

Statistics, law of large numbers
The law of large numbers states that as the size of our sample grows to infinity,

the sample mean approaches the true mean µX of the chosen PDF:

lim
n→∞

x̄n = µX

The sample mean x̄n works therefore as an estimate of the true mean µX .
What we need to find out is how good an approximation x̄n is to µX . In

any stochastic measurement, an estimated mean is of no use to us without a
measure of its error. A quantity that tells us how well we can reproduce it in
another experiment. We are therefore interested in the PDF of the sample mean
itself. Its standard deviation will be a measure of the spread of sample means,
and we will simply call it the error of the sample mean, or just sample error,
and denote it by errX . In practice, we will only be able to produce an estimate
of the sample error since the exact value would require the knowledge of the
true PDFs behind, which we usually do not have.

25

Statistics, more on sample error
Let us first take a look at what happens to the sample error as the size of the

sample grows. In a sample, each of the measurements xi can be associated with
its own stochastic variable Xi. The stochastic variable Xn for the sample mean
x̄n is then just a linear combination, already familiar to us:

Xn = 1
n

n∑
i=1

Xi

All the coefficients are just equal 1/n. The PDF of Xn, denoted by pXn
(x) is

the desired PDF of the sample means.

Statistics
The probability density of obtaining a sample mean x̄n is the product of

probabilities of obtaining arbitrary values x1, x2, . . . , xn with the constraint that
the mean of the set {xi} is x̄n:

pXn
(x) =

∫
pX(x1) · · ·

∫
pX(xn) δ

(
x− x1 + x2 + · · ·+ xn

n

)
dxn · · · dx1

And in particular we are interested in its variance var(Xn).

Statistics, central limit theorem
It is generally not possible to express pXn

(x) in a closed form given an
arbitrary PDF pX and a number n. But for the limit n→∞ it is possible to
make an approximation. The very important result is called the central limit
theorem. It tells us that as n goes to infinity, pXn

(x) approaches a Gaussian
distribution whose mean and variance equal the true mean and variance, µX
and σ2

X , respectively:

lim
n→∞

pXn
(x) =

(
n

2πvar(X)

)1/2
e−

n(x−x̄n)2
2var(X) (13)

Linking the regression analysis with a statistical interpre-
tation
Finally, we are going to discuss several statistical properties which can be
obtained in terms of analytical expressions. The advantage of doing linear
regression is that we actually end up with analytical expressions for several
statistical quantities. Standard least squares and Ridge regression allow us
to derive quantities like the variance and other expectation values in a rather
straightforward way.

26

It is assumed that εi ∼ N (0, σ2) and the εi are independent, i.e.:

Cov(εi1 , εi2) =
{
σ2 if i1 = i2,
0 if i1 6= i2.

The randomness of εi implies that yi is also a random variable. In particular,
yi is normally distributed, because εi ∼ N (0, σ2) and Xi,∗ β is a non-random
scalar. To specify the parameters of the distribution of yi we need to calculate
its first two moments.

Recall that X is a matrix of dimensionality n× p. The notation above Xi,∗
means that we are looking at the row number i and perform a sum over all
values p.

Assumptions made
The assumption we have made here can be summarized as (and this is going to
be useful when we discuss the bias-variance trade off) that there exists a function
f(x) and a normal distributed error ε ∼ N (0, σ2) which describe our data

y = f(x) + ε

We approximate this function with our model from the solution of the linear
regression equations, that is our function f is approximated by ỹ where we want
to minimize (y − ỹ)2, our MSE, with

ỹ = Xβ.

Expectation value and variance
We can calculate the expectation value of y for a given element i

E(yi) = E(Xi,∗ β) + E(εi) = Xi,∗ β,

while its variance is

Var(yi) = E{[yi − E(yi)]2} = E(y2
i)− [E(yi)]2

= E[(Xi,∗ β + εi)2]− (Xi,∗ β)2

= E[(Xi,∗ β)2 + 2εiXi,∗ β + ε2
i]− (Xi,∗ β)2

= (Xi,∗ β)2 + 2E(εi)Xi,∗ β + E(ε2
i)− (Xi,∗ β)2

= E(ε2
i) = Var(εi) = σ2.

Hence, yi ∼ N (Xi,∗ β, σ
2), that is y follows a normal distribution with mean

value Xβ and variance σ2 (not be confused with the singular values of the SVD).

27

Expectation value and variance for β
With the OLS expressions for the parameters β we can evaluate the expectation
value

E(β) = E[(X>X)−1XTY] = (XTX)−1XTE[Y] = (XTX)−1XTXβ = β.

This means that the estimator of the regression parameters is unbiased.
We can also calculate the variance
The variance of β is

Var(β) = E{[β − E(β)][β − E(β)]T }
= E{[(XTX)−1 XTY− β] [(XTX)−1 XTY− β]T }
= (XTX)−1 XT E{Y YT }X (XTX)−1 − β βT

= (XTX)−1 XT {Xβ βT XT + σ2}X (XTX)−1 − β βT

= β βT + σ2 (XTX)−1 − β βT = σ2 (XTX)−1,

where we have used that E(YYT) = Xβ βT XT + σ2 Inn. From Var(β) =
σ2 (XTX)−1, one obtains an estimate of the variance of the estimate of the
j-th regression coefficient: σ̂2(β̂j) = σ̂2

√
[(XTX)−1]jj . This may be used to

construct a confidence interval for the estimates.
In a similar way, we can obtain analytical expressions for say the expectation

values of the parameters β and their variance when we employ Ridge regression,
allowing us again to define a confidence interval.

It is rather straightforward to show that

E
[
βRidge] = (XTX + λIpp)−1(X>X)βOLS.

We see clearly that E
[
βRidge] 6= βOLS for any λ > 0. We say then that the ridge

estimator is biased.
We can also compute the variance as

Var[βRidge] = σ2[XTX + λI]−1XTX{[X>X + λI]−1}T ,

and it is easy to see that if the parameter λ goes to infinity then the variance of
Ridge parameters β goes to zero.

With this, we can compute the difference

Var[βOLS]−Var(βRidge) = σ2[XTX+λI]−1[2λI+λ2(XTX)−1]{[XTX+λI]−1}T .

The difference is non-negative definite since each component of the matrix
product is non-negative definite. This means the variance we obtain with the
standard OLS will always for λ > 0 be larger than the variance of β obtained
with the Ridge estimator. This has interesting consequences when we discuss
the so-called bias-variance trade-off below.

28

Resampling methods
With all these analytical equations for both the OLS and Ridge regression, we
will now outline how to assess a given model. This will lead us to a discussion of
the so-called bias-variance tradeoff (see below) and so-called resampling methods.

One of the quantities we have discussed as a way to measure errors is the
mean-squared error (MSE), mainly used for fitting of continuous functions.
Another choice is the absolute error.

In the discussions below we will focus on the MSE and in particular since we
will split the data into test and training data, we discuss the

1. prediction error or simply the test error, where we have a fixed training
set and the test error is the MSE arising from the data reserved for testing.
We discuss also the

2. training error ErrTrain, which is the average loss over the training data.

As our model becomes more and more complex, more of the training data tends
to used. The training may thence adapt to more complicated structures in the
data. This may lead to a decrease in the bias (see below for code example)
and a slight increase of the variance for the test error. For a certain level of
complexity the test error will reach a minimum, before starting to increase again.
The training error reaches a saturation.

Resampling methods: Jackknife and Bootstrap
Two famous resampling methods are the independent bootstrap and the
jackknife.

The jackknife is a special case of the independent bootstrap. Still, the
jackknife was made popular prior to the independent bootstrap. And as the
popularity of the independent bootstrap soared, new variants, such as the
dependent bootstrap.

The Jackknife and independent bootstrap work for independent, identically
distributed random variables. If these conditions are not satisfied, the methods
will fail. Yet, it should be said that if the data are independent, identically
distributed, and we only want to estimate the variance of X (which often is the
case), then there is no need for bootstrapping.

Resampling methods: Jackknife
The Jackknife works by making many replicas of the estimator θ̂. The jackknife
is a resampling method where we systematically leave out one observation from
the vector of observed values x = (x1, x2, · · · , Xn). Let xi denote the vector

xi = (x1, x2, · · · , xi−1, xi+1, · · · , xn),

which equals the vector x with the exception that observation number i is
left out. Using this notation, define θ̂i to be the estimator θ̂ computed using ~Xi.

29

Jackknife code example
Resampling methods: Bootstrap

Bootstrapping is a nonparametric approach to statistical inference that substi-
tutes computation for more traditional distributional assumptions and asymptotic
results. Bootstrapping offers a number of advantages:

1. The bootstrap is quite general, although there are some cases in which it
fails.

2. Because it does not require distributional assumptions (such as normally
distributed errors), the bootstrap can provide more accurate inferences
when the data are not well behaved or when the sample size is small.

3. It is possible to apply the bootstrap to statistics with sampling distributions
that are difficult to derive, even asymptotically.

4. It is relatively simple to apply the bootstrap to complex data-collection
plans (such as stratified and clustered samples).

Resampling methods: Bootstrap background
Since θ̂ = θ̂(X) is a function of random variables, θ̂ itself must be a random
variable. Thus it has a pdf, call this function p(t). The aim of the bootstrap is
to estimate p(t) by the relative frequency of θ̂. You can think of this as using
a histogram in the place of p(t). If the relative frequency closely resembles
p(~t), then using numerics, it is straight forward to estimate all the interesting
parameters of p(t) using point estimators.

Resampling methods: More Bootstrap background
In the case that θ̂ has more than one component, and the components are
independent, we use the same estimator on each component separately. If the
probability density function of Xi, p(x), had been known, then it would have
been straight forward to do this by:

1. Drawing lots of numbers from p(x), suppose we call one such set of numbers
(X∗1 , X∗2 , · · · , X∗n).

2. Then using these numbers, we could compute a replica of θ̂ called θ̂∗.

By repeated use of (1) and (2), many estimates of θ̂ could have been obtained.
The idea is to use the relative frequency of θ̂∗ (think of a histogram) as an
estimate of p(t).

30

Resampling methods: Bootstrap approach
But unless there is enough information available about the process that generated
X1, X2, · · · , Xn, p(x) is in general unknown. Therefore, Efron in 1979 asked the
question: What if we replace p(x) by the relative frequency of the observation
Xi; if we draw observations in accordance with the relative frequency of the
observations, will we obtain the same result in some asymptotic sense? The
answer is yes.

Instead of generating the histogram for the relative frequency of the obser-
vation Xi, just draw the values (X∗1 , X∗2 , · · · , X∗n) with replacement from the
vector X.

Resampling methods: Bootstrap steps
The independent bootstrap works like this:

1. Draw with replacement n numbers for the observed variables x = (x1, x2, · · · , xn).

2. Define a vector x∗ containing the values which were drawn from x.

3. Using the vector x∗ compute θ̂∗ by evaluating θ̂ under the observations
x∗.

4. Repeat this process k times.

When you are done, you can draw a histogram of the relative frequency of θ̂∗.
This is your estimate of the probability distribution p(t). Using this probability
distribution you can estimate any statistics thereof. In principle you never draw
the histogram of the relative frequency of θ̂∗. Instead you use the estimators
corresponding to the statistic of interest. For example, if you are interested in
estimating the variance of θ̂, apply the etsimator σ̂2 to the values θ̂∗.

Code example for the Bootstrap method
The following code starts with a Gaussian distribution with mean value µ = 100
and variance σ = 15. We use this to generate the data used in the bootstrap
analysis. The bootstrap analysis returns a data set after a given number of
bootstrap operations (as many as we have data points). This data set consists of
estimated mean values for each bootstrap operation. The histogram generated
by the bootstrap method shows that the distribution for these mean values is
also a Gaussian, centered around the mean value µ = 100 but with standard
deviation σ/

√
n, where n is the number of bootstrap samples (in this case the

same as the number of original data points). The value of the standard deviation
is what we expect from the central limit theorem.

31

https://projecteuclid.org/euclid.aos/1176344552

Various steps in cross-validation
When the repetitive splitting of the data set is done randomly, samples may
accidently end up in a fast majority of the splits in either training or test set.
Such samples may have an unbalanced influence on either model building or
prediction evaluation. To avoid this k-fold cross-validation structures the data
splitting. The samples are divided into k more or less equally sized exhaustive
and mutually exclusive subsets. In turn (at each split) one of these subsets plays
the role of the test set while the union of the remaining subsets constitutes the
training set. Such a splitting warrants a balanced representation of each sample
in both training and test set over the splits. Still the division into the k subsets
involves a degree of randomness. This may be fully excluded when choosing
k = n. This particular case is referred to as leave-one-out cross-validation
(LOOCV).

How to set up the cross-validation for Ridge and/or Lasso
• Define a range of interest for the penalty parameter.

• Divide the data set into training and test set comprising samples {1, . . . , n}\
i and {i}, respectively.

• Fit the linear regression model by means of ridge estimation for each λ in
the grid using the training set, and the corresponding estimate of the error
variance σ2

−i(λ), as

β−i(λ) = (XT
−i,∗X−i,∗ + λIpp)−1XT

−i,∗y−i

• Evaluate the prediction performance of these models on the test set
by log{L[yi,Xi,∗;β−i(λ),σ2

−i(λ)]}. Or, by the prediction error |yi −
Xi,∗β−i(λ)|, the relative error, the error squared or the R2 score function.

• Repeat the first three steps such that each sample plays the role of the
test set once.

• Average the prediction performances of the test sets at each grid point of
the penalty bias/parameter. It is an estimate of the prediction performance
of the model corresponding to this value of the penalty parameter on novel
data. It is defined as

1
n

n∑
i=1

log{L[yi,Xi,∗;β−i(λ),σ2
−i(λ)]}.

Cross-validation in brief
For the various values of k

32

1. shuffle the dataset randomly.

2. Split the dataset into k groups.

3. For each unique group:

(a) Decide which group to use as set for test data
(b) Take the remaining groups as a training data set
(c) Fit a model on the training set and evaluate it on the test set
(d) Retain the evaluation score and discard the model

4. Summarize the model using the sample of model evaluation scores

Code Example for Cross-validation and k-fold Cross-validation
The code here uses Ridge regression with cross-validation (CV) resampling and
k-fold CV in order to fit a specific polynomial.

The bias-variance tradeoff
We will discuss the bias-variance tradeoff in the context of continuous predictions
such as regression. However, many of the intuitions and ideas discussed here
also carry over to classification tasks. Consider a dataset L consisting of the
data XL = {(yj ,xj), j = 0 . . . n− 1}.

Let us assume that the true data is generated from a noisy model

y = f(x) + ε

where ε is normally distributed with mean zero and standard deviation σ2.
In our derivation of the ordinary least squares method we defined then an

approximation to the function f in terms of the parameters β and the design
matrix X which embody our model, that is ỹ = Xβ.

Thereafter we found the parameters β by optimizing the means squared error
via the so-called cost function

C(X,β) = 1
n

n−1∑
i=0

(yi − ỹi)2 = E
[
(y − ỹ)2] .

We can rewrite this as

E
[
(y − ỹ)2] = 1

n

∑
i

(fi − E [ỹ])2 + 1
n

∑
i

(ỹi − E [ỹ])2 + σ2.

The three terms represent the square of the bias of the learning method,
which can be thought of as the error caused by the simplifying assumptions built
into the method. The second term represents the variance of the chosen model
and finally the last terms is variance of the error ε.

33

To derive this equation, we need to recall that the variance of y and ε are
both equal to σ2. The mean value of ε is by definition equal to zero. Furthermore,
the function f is not a stochastics variable, idem for ỹ. We use a more compact
notation in terms of the expectation value

E
[
(y − ỹ)2] = E

[
(f + ε− ỹ)2] ,

and adding and subtracting E [ỹ] we get

E
[
(y − ỹ)2] = E

[
(f + ε− ỹ + E [ỹ]− E [ỹ])2] ,

which, using the abovementioned expectation values can be rewritten as

E
[
(y − ỹ)2] = E

[
(y − E [ỹ])2]+ Var [ỹ] + σ2,

that is the rewriting in terms of the so-called bias, the variance of the model ỹ
and the variance of ε.

Example code for Bias-Variance tradeoff
Understanding what happens
Summing up
The bias-variance tradeoff summarizes the fundamental tension in machine
learning, particularly supervised learning, between the complexity of a model
and the amount of training data needed to train it. Since data is often limited,
in practice it is often useful to use a less-complex model with higher bias, that is
a model whose asymptotic performance is worse than another model because
it is easier to train and less sensitive to sampling noise arising from having a
finite-sized training dataset (smaller variance).

The above equations tell us that in order to minimize the expected test error,
we need to select a statistical learning method that simultaneously achieves low
variance and low bias. Note that variance is inherently a nonnegative quantity,
and squared bias is also nonnegative. Hence, we see that the expected test MSE
can never lie below V ar(ε), the irreducible error.

What do we mean by the variance and bias of a statistical learning method?
The variance refers to the amount by which our model would change if we
estimated it using a different training data set. Since the training data are used
to fit the statistical learning method, different training data sets will result in a
different estimate. But ideally the estimate for our model should not vary too
much between training sets. However, if a method has high variance then small
changes in the training data can result in large changes in the model. In general,
more flexible statistical methods have higher variance.

You may also find this recent article of interest.

34

https://www.pnas.org/content/116/32/15849

Another Example from Scikit-Learn’s Repository
More examples on bootstrap and cross-validation and er-
rors
The same example but now with cross-validation
Cross-validation with Ridge
The Ising model
The one-dimensional Ising model with nearest neighbor interaction, no external
field and a constant coupling constant J is given by

H = −J
L∑
k

sksk+1, (14)

where si ∈ {−1, 1} and sN+1 = s1. The number of spins in the system is
determined by L. For the one-dimensional system there is no phase transition.

We will look at a system of L = 40 spins with a coupling constant of J = 1.
To get enough training data we will generate 10000 states with their respective
energies.

Here we use ordinary least squares regression to predict the energy for the
nearest neighbor one-dimensional Ising model on a ring, i.e., the endpoints wrap
around. We will use linear regression to fit a value for the coupling constant to
achieve this.

Reformulating the problem to suit regression
A more general form for the one-dimensional Ising model is

H = −
L∑
j

L∑
k

sjskJjk. (15)

Here we allow for interactions beyond the nearest neighbors and a state
dependent coupling constant. This latter expression can be formulated as a
matrix-product

H = XJ, (16)

where Xjk = sjsk and J is a matrix which consists of the elements −Jjk.
This form of writing the energy fits perfectly with the form utilized in linear
regression, that is

y = Xβ + ε, (17)

We split the data in training and test data as discussed in the previous
example

35

Linear regression
In the ordinary least squares method we choose the cost function

C(X,β) = 1
n

{
(Xβ − y)T (Xβ − y)

}
. (18)

We then find the extremal point of C by taking the derivative with respect
to β as discussed above. This yields the expression for β to be

β = XTy

XTX
,

which immediately imposes some requirements on X as there must exist an
inverse of XTX. If the expression we are modeling contains an intercept, i.e., a
constant term, we must make sure that the first column of X consists of 1. We
do this here

Singular Value decomposition
Doing the inversion directly turns out to be a bad idea since the matrix XTX is
singular. An alternative approach is to use the singular value decomposition.
Using the definition of the Moore-Penrose pseudoinverse we can write the equation
for β as

β = X+y,

where the pseudoinverse of X is given by

X+ = XT

XTX
.

Using singular value decomposition we can decompose the matrix X =
UΣV T , where U and V are orthogonal(unitary) matrices and Σ contains the
singular values (more details below). where X+ = V Σ+UT . This reduces the
equation for ω to

β = V Σ+UTy. (19)

Note that solving this equation by actually doing the pseudoinverse (which
is what we will do) is not a good idea as this operation scales as O(n3), where n
is the number of elements in a general matrix. Instead, doing QR-factorization
and solving the linear system as an equation would reduce this down to O(n2)
operations.

When extracting the J-matrix we need to make sure that we remove the
intercept, as is done here

A way of looking at the coefficients in J is to plot the matrices as images.
It is interesting to note that OLS considers both Jj,j+1 = −0.5 and Jj,j−1 =

−0.5 as valid matrix elements for J . In our discussion below on hyperparameters

36

and Ridge and Lasso regression we will see that this problem can be removed,
partly and only with Lasso regression.

In this case our matrix inversion was actually possible. The obvious question
now is what is the mathematics behind the SVD?

The one-dimensional Ising model
Let us bring back the Ising model again, but now with an additional focus on
Ridge and Lasso regression as well. We repeat some of the basic parts of the
Ising model and the setup of the training and test data. The one-dimensional
Ising model with nearest neighbor interaction, no external field and a constant
coupling constant J is given by

H = −J
L∑
k

sksk+1, (20)

where si ∈ {−1, 1} and sN+1 = s1. The number of spins in the system is
determined by L. For the one-dimensional system there is no phase transition.

We will look at a system of L = 40 spins with a coupling constant of J = 1.
To get enough training data we will generate 10000 states with their respective
energies.

A more general form for the one-dimensional Ising model is

H = −
L∑
j

L∑
k

sjskJjk. (21)

Here we allow for interactions beyond the nearest neighbors and a more
adaptive coupling matrix. This latter expression can be formulated as a matrix-
product on the form

H = XJ, (22)

where Xjk = sjsk and J is the matrix consisting of the elements −Jjk. This
form of writing the energy fits perfectly with the form utilized in linear regression,
viz.

y = Xβ + ε. (23)

We organize the data as we did above
We will do all fitting with Scikit-Learn,
When extracting the J-matrix we make sure to remove the intercept And

then we plot the results The results perfectly with our previous discussion where
we used our own code.

37

Ridge regression
Having explored the ordinary least squares we move on to ridge regression. In
ridge regression we include a regularizer. This involves a new cost function
which leads to a new estimate for the weights β. This results in a penalized
regression problem. The cost function is given by

C(X,β;λ) = (Xβ − y)T (Xβ − y) + λβTβ. (24)

LASSO regression
In the Least Absolute Shrinkage and Selection Operator (LASSO)-method
we get a third cost function.

C(X,β;λ) = (Xβ − y)T (Xβ − y) + λ
√
βTβ. (25)

Finding the extremal point of this cost function is not so straight-forward as
in least squares and ridge. We will therefore rely solely on the function “Lasso“
from Scikit-Learn.

It is quite striking how LASSO breaks the symmetry of the coupling constant
as opposed to ridge and OLS. We get a sparse solution with Jj,j+1 = −1.

Performance as function of the regularization parameter
We see how the different models perform for a different set of values for λ.

We see that LASSO reaches a good solution for low values of λ, but will
"wither" when we increase λ too much. Ridge is more stable over a larger range
of values for λ, but eventually also fades away.

Finding the optimal value of λ
To determine which value of λ is best we plot the accuracy of the models when
predicting the training and the testing set. We expect the accuracy of the
training set to be quite good, but if the accuracy of the testing set is much lower
this tells us that we might be subject to an overfit model. The ideal scenario is
an accuracy on the testing set that is close to the accuracy of the training set.

From the above figure we can see that LASSO with λ = 10−2 achieves a very
good accuracy on the test set. This by far surpasses the other models for all
values of λ.

38

