
Data Analysis and Machine Learning:
Logistic Regression

Morten Hjorth-Jensen1,2

1Department of Physics, University of Oslo
2Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

May 21, 2020

Logistic Regression
In linear regression our main interest was centered on learning the coefficients of
a functional fit (say a polynomial) in order to be able to predict the response of a
continuous variable on some unseen data. The fit to the continuous variable yi is
based on some independent variables x̂i. Linear regression resulted in analytical
expressions for standard ordinary Least Squares or Ridge regression (in terms of
matrices to invert) for several quantities, ranging from the variance and thereby
the confidence intervals of the parameters β̂ to the mean squared error. If we can
invert the product of the design matrices, linear regression gives then a simple
recipe for fitting our data.

Classification problems, however, are concerned with outcomes taking the
form of discrete variables (i.e. categories). We may for example, on the basis
of DNA sequencing for a number of patients, like to find out which mutations
are important for a certain disease; or based on scans of various patients’ brains,
figure out if there is a tumor or not; or given a specific physical system, we’d like
to identify its state, say whether it is an ordered or disordered system (typical
situation in solid state physics); or classify the status of a patient, whether
she/he has a stroke or not and many other similar situations.

The most common situation we encounter when we apply logistic regression
is that of two possible outcomes, normally denoted as a binary outcome, true or
false, positive or negative, success or failure etc.

Optimization and Deep learning
Logistic regression will also serve as our stepping stone towards neural network
algorithms and supervised deep learning. For logistic learning, the minimization
of the cost function leads to a non-linear equation in the parameters β̂. The
optimization of the problem calls therefore for minimization algorithms. This

c© 1999-2020, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

forms the bottle neck of all machine learning algorithms, namely how to find
reliable minima of a multi-variable function. This leads us to the family of
gradient descent methods. The latter are the working horses of basically all
modern machine learning algorithms.

We note also that many of the topics discussed here on logistic regression
are also commonly used in modern supervised Deep Learning models, as we will
see later.

Basics
We consider the case where the dependent variables, also called the responses or
the outcomes, yi are discrete and only take values from k = 0, . . . ,K − 1 (i.e. K
classes).

The goal is to predict the output classes from the design matrix X̂ ∈ Rn×p

made of n samples, each of which carries p features or predictors. The primary
goal is to identify the classes to which new unseen samples belong.

Let us specialize to the case of two classes only, with outputs yi = 0 and
yi = 1. Our outcomes could represent the status of a credit card user that could
default or not on her/his credit card debt. That is

yi =
[
0 no
1 yes

]
.

Linear classifier
Before moving to the logistic model, let us try to use our linear regression model
to classify these two outcomes. We could for example fit a linear model to the
default case if yi > 0.5 and the no default case yi ≤ 0.5.

We would then have our weighted linear combination, namely

ŷ = X̂T β̂ + ε̂, (1)

where ŷ is a vector representing the possible outcomes, X̂ is our n× p design
matrix and β̂ represents our estimators/predictors.

Some selected properties
The main problem with our function is that it takes values on the entire real axis.
In the case of logistic regression, however, the labels yi are discrete variables. A
typical example is the credit card data discussed earlier, where we can set the
state of defaulting the debt to yi = 1 and not to yi = 0 for one the persons in
the data set (see the full example below).

One simple way to get a discrete output is to have sign functions that map
the output of a linear regressor to values {0, 1}, f(si) = sign(si) = 1 if si ≥ 0
and 0 if otherwise. We will encounter this model in our first demonstration of
neural networks. Historically it is called the “perceptron" model in the machine
learning literature. This model is extremely simple. However, in many cases it

2

is more favorable to use a “soft" classifier that outputs the probability of a given
category. This leads us to the logistic function.

The logistic function
The perceptron is an example of a “hard classification” model. We will encounter
this model when we discuss neural networks as well. Each datapoint is deter-
ministically assigned to a category (i.e yi = 0 or yi = 1). In many cases, it
is favorable to have a “soft” classifier that outputs the probability of a given
category rather than a single value. For example, given xi, the classifier outputs
the probability of being in a category k. Logistic regression is the most common
example of a so-called soft classifier. In logistic regression, the probability that
a data point xi belongs to a category yi = {0, 1} is given by the so-called logit
function (or Sigmoid) which is meant to represent the likelihood for a given
event,

p(t) = 1
1 + exp−t = exp t

1 + expt .

Note that 1− p(t) = p(−t).

Examples of likelihood functions used in logistic regression
and nueral networks
The following code plots the logistic function, the step function and other
functions we will encounter from here and on.

Two parameters
We assume now that we have two classes with yi either 0 or 1. Furthermore we
assume also that we have only two parameters β in our fitting of the Sigmoid
function, that is we define probabilities

p(yi = 1|xi, β̂) = exp (β0 + β1xi)
1 + exp (β0 + β1xi)

,

p(yi = 0|xi, β̂) = 1− p(yi = 1|xi, β̂),

where β̂ are the weights we wish to extract from data, in our case β0 and β1.
Note that we used

p(yi = 0|xi, β̂) = 1− p(yi = 1|xi, β̂).

Maximum likelihood
In order to define the total likelihood for all possible outcomes from a dataset
D = {(yi, xi)}, with the binary labels yi ∈ {0, 1} and where the data points
are drawn independently, we use the so-called Maximum Likelihood Estimation
(MLE) principle. We aim thus at maximizing the probability of seeing the

3

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

observed data. We can then approximate the likelihood in terms of the product
of the individual probabilities of a specific outcome yi, that is

P (D|β̂) =
n∏

i=1

[
p(yi = 1|xi, β̂)

]yi
[
1− p(yi = 1|xi, β̂))

]1−yi

from which we obtain the log-likelihood and our cost/loss function

C(β̂) =
n∑

i=1

(
yi log p(yi = 1|xi, β̂) + (1− yi) log

[
1− p(yi = 1|xi, β̂))

])
.

The cost function rewritten
Reordering the logarithms, we can rewrite the cost/loss function as

C(β̂) =
n∑

i=1
(yi(β0 + β1xi)− log (1 + exp (β0 + β1xi))) .

The maximum likelihood estimator is defined as the set of parameters that
maximize the log-likelihood where we maximize with respect to β. Since the
cost (error) function is just the negative log-likelihood, for logistic regression we
have that

C(β̂) = −
n∑

i=1
(yi(β0 + β1xi)− log (1 + exp (β0 + β1xi))) .

This equation is known in statistics as the cross entropy. Finally, we note that
just as in linear regression, in practice we often supplement the cross-entropy
with additional regularization terms, usually L1 and L2 regularization as we did
for Ridge and Lasso regression.

Minimizing the cross entropy
The cross entropy is a convex function of the weights β̂ and, therefore, any local
minimizer is a global minimizer.

Minimizing this cost function with respect to the two parameters β0 and β1
we obtain

∂C(β̂)
∂β0

= −
n∑

i=1

(
yi −

exp (β0 + β1xi)
1 + exp (β0 + β1xi)

)
,

and
∂C(β̂)
∂β1

= −
n∑

i=1

(
yixi − xi

exp (β0 + β1xi)
1 + exp (β0 + β1xi)

)
.

4

A more compact expression
Let us now define a vector ŷ with n elements yi, an n × p matrix X̂ which
contains the xi values and a vector p̂ of fitted probabilities p(yi|xi, β̂). We can
rewrite in a more compact form the first derivative of cost function as

∂C(β̂)
∂β̂

= −X̂T (ŷ − p̂) .

If we in addition define a diagonal matrix Ŵ with elements p(yi|xi, β̂)(1−
p(yi|xi, β̂), we can obtain a compact expression of the second derivative as

∂2C(β̂)
∂β̂∂β̂T

= X̂T Ŵ X̂.

Extending to more predictors
Within a binary classification problem, we can easily expand our model to include
multiple predictors. Our ratio between likelihoods is then with p predictors

log p(β̂x̂)
1− p(β̂x̂)

= β0 + β1x1 + β2x2 + · · ·+ βpxp.

Here we defined x̂ = [1, x1, x2, . . . , xp] and β̂ = [β0, β1, . . . , βp] leading to

p(β̂x̂) = exp (β0 + β1x1 + β2x2 + · · ·+ βpxp)
1 + exp (β0 + β1x1 + β2x2 + · · ·+ βpxp) .

Including more classes
Till now we have mainly focused on two classes, the so-called binary system.
Suppose we wish to extend to K classes. Let us for the sake of simplicity assume
we have only two predictors. We have then following model

log p(C = 1|x)
p(K|x) = β10 + β11x1,

log p(C = 2|x)
p(K|x) = β20 + β21x1,

and so on till the class C = K − 1 class

log p(C = K − 1|x)
p(K|x) = β(K−1)0 + β(K−1)1x1,

and the model is specified in term of K − 1 so-called log-odds or logit
transformations.

5

More classes
In our discussion of neural networks we will encounter the above again in terms
of a slightly modified function, the so-called Softmax function.

The softmax function is used in various multiclass classification methods, such
as multinomial logistic regression (also known as softmax regression), multiclass
linear discriminant analysis, naive Bayes classifiers, and artificial neural networks.
Specifically, in multinomial logistic regression and linear discriminant analysis,
the input to the function is the result of K distinct linear functions, and the
predicted probability for the k-th class given a sample vector x̂ and a weighting
vector β̂ is (with two predictors):

p(C = k|x) = exp (βk0 + βk1x1)
1 +

∑K−1
l=1 exp (βl0 + βl1x1)

.

It is easy to extend to more predictors. The final class is

p(C = K|x) = 1
1 +

∑K−1
l=1 exp (βl0 + βl1x1)

,

and they sum to one. Our earlier discussions were all specialized to the case
with two classes only. It is easy to see from the above that what we derived
earlier is compatible with these equations.

To find the optimal parameters we would typically use a gradient descent
method. Newton’s method and gradient descent methods are discussed in the
material on optimization methods.

A simple classification problem
Preprocessing our data

We discuss here how to preprocess our data. Till now and in connection with
our previous examples we have not met so many cases where we are too sensitive
to the scaling of our data. Normally the data may need a rescaling and/or may
be sensitive to extreme values. Scaling the data renders our inputs much more
suitable for the algorithms we want to employ.

Scikit-Learn has several functions which allow us to rescale the data, nor-
mally resulting in much better results in terms of various accuracy scores.
The StandardScaler function in Scikit-Learn ensures that for each fea-
ture/predictor we study the mean value is zero and the variance is one (every
column in the design/feature matrix). This scaling has the drawback that it
does not ensure that we have a particular maximum or minimum in our data
set. Another function included in Scikit-Learn is the MinMaxScaler which
ensures that all features are exactly between 0 and 1. The

More preprocessing
The Normalizer scales each data point such that the feature vector has a
euclidean length of one. In other words, it projects a data point on the circle

6

https://compphysics.github.io/MachineLearning/doc/pub/Splines/html/Splines-bs.html

(or sphere in the case of higher dimensions) with a radius of 1. This means
every data point is scaled by a different number (by the inverse of it’s length).
This normalization is often used when only the direction (or angle) of the data
matters, not the length of the feature vector.

The RobustScaler works similarly to the StandardScaler in that it ensures
statistical properties for each feature that guarantee that they are on the same
scale. However, the RobustScaler uses the median and quartiles, instead of mean
and variance. This makes the RobustScaler ignore data points that are very
different from the rest (like measurement errors). These odd data points are also
called outliers, and might often lead to trouble for other scaling techniques.

Simple preprocessing examples, breast cancer data and clas-
sification
We show here how we can use a simple regression case on the breast cancer data
using logistic regression as algorithm for classification.

Covariance and Correlation
In addition to the plot of the features, we study now also the covariance (and the
correlation matrix). We use also Pandas to compute the correlation matrix.

In the above example we note two things. In the first plot we display the
overlap of benign and malignant tumors as functions of the various features in
the Wisconsing breast cancer data set. We see that for some of the features we
can distinguish clearly the benign and malignant cases while for other features
we cannot. This can point to us which features may be of greater interest when
we wish to classify a benign or not benign tumour.

In the second figure we have computed the so-called correlation matrix, which
in our case with thirty features becomes a 30× 30 matrix.

We constructed this matrix using pandas via the statements and then
Diagonalizing this matrix we can in turn say something about which features

are of relevance and which are not. This leads us to the classical Principal
Component Analysis (PCA) theorem with applications. This topic is covered in
the PCA slides.

7

