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Introduction
The aim of this set of lectures is to review some central linear algebra algorithms
that we will need in our data analysis part and in the construction of Machine
Learning algorithms (ML). This will allow us to introduce some central program-
ming features of high-level languages like Python and compiled languages like
C++ and/or Fortran.

As discussed in the introductory notes, these series of lectures focuses both
on using central Python packages like tensorflow and scikit-learn as well as
writing your own codes for some central ML algorithms. The latter can be
written in a language of your choice, be it Python, Julia, R, Rust, C++, Fortran
etc. In order to avoid confusion however, in these lectures we will limit our
attention to Python, C++ and Fortran.

Important Matrix and vector handling packages
There are several central software packages for linear algebra and eigenvalue
problems. Several of the more popular ones have been wrapped into ofter
software packages like those from the widely used text Numerical Recipes.
The original source codes in many of the available packages are often taken from
the widely used software package LAPACK, which follows two other popular
packages developed in the 1970s, namely EISPACK and LINPACK. We describe
them shortly here.

• LINPACK: package for linear equations and least square problems.
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• LAPACK:package for solving symmetric, unsymmetric and generalized
eigenvalue problems. From LAPACK’s website http://www.netlib.org
it is possible to download for free all source codes from this library. Both
C/C++ and Fortran versions are available.

• BLAS (I, II and III): (Basic Linear Algebra Subprograms) are routines that
provide standard building blocks for performing basic vector and matrix
operations. Blas I is vector operations, II vector-matrix operations and
III matrix-matrix operations. Highly parallelized and efficient codes, all
available for download from http://www.netlib.org.

When dealing with matrices and vectors a central issue is memory handling and
allocation. If our code is written in Python the way we declare these objects and
the way they are handled, interpreted and used by say a linear algebra library,
requires codes that interface our Python program with such libraries. For Python
programmers, Numpy is by now the standard Python package for numerical
arrays in Python as well as the source of functions which act on these arrays.
These functions span from eigenvalue solvers to functions that compute the mean
value, variance or the covariance matrix. If you are not familiar with how arrays
are handled in say Python or compiled languages like C++ and Fortran, the
sections in this chapter may be useful. For C++ programmer, Armadillo is
widely used library for linear algebra and eigenvalue problems. In addition it
offers a convenient way to handle and organize arrays. We discuss this library
as well. Before we proceed we believe it may be convenient to repeat some basic
features of matrices and vectors.

Basic Matrix Features
Matrix properties reminder.

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Basic Matrix Features
The inverse of a matrix is defined by

A−1 ·A = I

Basic Matrix Features
Matrix Properties Reminder.
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Relations Name matrix elements
A = AT symmetric aij = aji

A =
(
AT
)−1 real orthogonal

∑
k aikajk =

∑
k akiakj = δij

A = A∗ real matrix aij = a∗ij
A = A† hermitian aij = a∗ji

A =
(
A†
)−1 unitary

∑
k aika

∗
jk =

∑
k a
∗
kiakj = δij

Some famous Matrices
• Diagonal if aij = 0 for i 6= j

• Upper triangular if aij = 0 for i > j

• Lower triangular if aij = 0 for i < j

• Upper Hessenberg if aij = 0 for i > j + 1

• Lower Hessenberg if aij = 0 for i < j + 1

• Tridiagonal if aij = 0 for |i− j| > 1

• Lower banded with bandwidth p: aij = 0 for i > j + p

• Upper banded with bandwidth p: aij = 0 for i < j + p

• Banded, block upper triangular, block lower triangular....

Basic Matrix Features
Some Equivalent Statements. For an N ×N matrix A the following prop-
erties are all equivalent

• If the inverse of A exists, A is nonsingular.

• The equation Ax = 0 implies x = 0.

• The rows of A form a basis of RN .

• The columns of A form a basis of RN .

• A is a product of elementary matrices.

• 0 is not eigenvalue of A.
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Numpy and arrays
Numpy provides an easy way to handle arrays in Python. The standard way to
import this library is as Here we have defined a vector x with n = 10 elements
with its values given by the Normal distribution N(0, 1). Another alternative is to
declare a vector as follows Here we have defined a vector with three elements, with
x0 = 1, x1 = 2 and x2 = 3. Note that both Python and C++ start numbering
array elements from 0 and on. This means that a vector with n elements has
a sequence of entities x0, x1, x2, . . . , xn−1. We could also let (recommended)
Numpy to compute the logarithms of a specific array as

Here we have used Numpy’s unary function np.log. This function is highly
tuned to compute array elements since the code is vectorized and does not require
looping. We normaly recommend that you use the Numpy intrinsic functions
instead of the corresponding log function from Python’s math module. The
looping is done explicitely by the np.log function. The alternative, and slower
way to compute the logarithms of a vector would be to write

We note that our code is much longer already and we need to import the log
function from the math module. The attentive reader will also notice that the
output is [1, 1, 2]. Python interprets automacally our numbers as integers (like the
automatic keyword in C++). To change this we could define our array elements
to be double precision numbers as or simply write them as double precision
numbers (Python uses 64 bits as default for floating point type variables), that
is To check the number of bytes (remember that one byte contains eight bits for
double precision variables), you can use simple use the itemsize functionality
(the array x is actually an object which inherits the functionalities defined in
Numpy) as

Matrices in Python
Having defined vectors, we are now ready to try out matrices. We can define
a 3× 3 real matrix Â as (recall that we user lowercase letters for vectors and
uppercase letters for matrices) If we use the shape function we would get (3, 3)
as output, that is verifying that our matrix is a 3 × 3 matrix. We can slice
the matrix and print for example the first column (Python organized matrix
elements in a row-major order, see below) as We can continue this was by printing
out other columns or rows. The example here prints out the second column
Numpy contains many other functionalities that allow us to slice, subdivide etc
etc arrays. We strongly recommend that you look up the Numpy website for
more details. Useful functions when defining a matrix are the np.zeros function
which declares a matrix of a given dimension and sets all elements to zero or
initializing all elements to or as unitarily distributed random numbers (see the
material on random number generators in the statistics part)

As we will see throughout these lectures, there are several extremely useful
functionalities in Numpy. As an example, consider the discussion of the covariance
matrix. Suppose we have defined three vectors x̂, ŷ, ẑ with n elements each. The
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covariance matrix is defined as

Σ̂ =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 ,
where for example

σxy = 1
n

n−1∑
i=0

(xi − x)(yi − y).

The Numpy function np.cov calculates the covariance elements using the factor
1/(n− 1) instead of 1/n since it assumes we do not have the exact mean values.
For a more in-depth discussion of the covariance and covariance matrix and its
meaning, we refer you to the lectures on statistics. The following simple function
uses the np.vstack function which takes each vector of dimension 1 × n and
produces a 3× n matrix Ŵ

Ŵ =


x0 y0 z0
x1 y1 z1
x2 y2 z2
. . . . . . . . .
xn−2 yn−2 zn−2
xn−1 yn−1 zn−1

 ,

which in turn is converted into into the 3times3 covariance matrix Σ̂ via the
Numpy function np.cov(). In our review of statistical functions and quantities
we will discuss more about the meaning of the covariance matrix. Here we
note that we can calculate the mean value of each set of samples x̂ etc using
the Numpy function np.mean(x). We can also extract the eigenvalues of the
covariance matrix through the np.linalg.eig() function.

Matrix Handling in C/C++, Static and Dynamical alloca-
tion
Static. We have an N ×N matrix A with N = 100 In C/C++ this would be
defined as

Note the way the matrix is organized, row-major order.

Matrix Handling in C/C++
Row Major Order, Addition. We have N ×N matrices A, B and C and
we wish to evaluate A = B + C.

A = B±C =⇒ aij = bij ± cij ,

In C/C++ this would be coded like
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Matrix Handling in C/C++
Row Major Order, Multiplication. We have N ×N matrices A, B and C
and we wish to evaluate A = BC.

A = BC =⇒ aij =
n∑

k=1
bikckj ,

In C/C++ this would be coded like

Dynamic memory allocation in C/C++
At least three possibilities in this course

• Do it yourself

• Use the functions provided in the library package lib.cpp

• Use Armadillo http://arma.sourceforgenet (a C++ linear algebra li-
brary, discussion both here and at lab).

Matrix Handling in C/C++, Dynamic Allocation
Do it yourself. Always free space when you don’t need an array anymore.

Armadillo, recommended!!
• Armadillo is a C++ linear algebra library (matrix maths) aiming towards

a good balance between speed and ease of use. The syntax is deliberately
similar to Matlab.

• Integer, floating point and complex numbers are supported, as well as a
subset of trigonometric and statistics functions. Various matrix decompo-
sitions are provided through optional integration with LAPACK, or one
of its high performance drop-in replacements (such as the multi-threaded
MKL or ACML libraries).

• A delayed evaluation approach is employed (at compile-time) to combine
several operations into one and reduce (or eliminate) the need for tem-
poraries. This is accomplished through recursive templates and template
meta-programming.

• Useful for conversion of research code into production environments, or
if C++ has been decided as the language of choice, due to speed and/or
integration capabilities.

• The library is open-source software, and is distributed under a license that
is useful in both open-source and commercial/proprietary contexts.
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Armadillo, simple examples
Armadillo, how to compile and install
For people using Ubuntu, Debian, Linux Mint, simply go to the synaptic package
manager and install armadillo from there. You may have to install Lapack as
well. For Mac and Windows users, follow the instructions from the webpage
http://arma.sourceforge.net. To compile, use for example (linux/ubuntu)

where the -l option indicates the library you wish to link to.
For OS X users you may have to declare the paths to the include files and

the libraries as

Armadillo, simple examples
Armadillo, simple examples
Armadillo, simple examples
Armadillo, simple examples
Armadillo, simple examples
Armadillo, simple examples
Armadillo, simple examples
Gaussian Elimination
We start with the linear set of equations

Ax = w.

We assume also that the matrix A is non-singular and that the matrix elements
along the diagonal satisfy aii 6= 0. Simple 4× 4 example

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



x1
x2
x3
x4

 =


w1
w2
w3
w4

 .
Gaussian Elimination
or

a11x1 + a12x2 + a13x3 + a14x4 =w1

a21x1 + a22x2 + a23x3 + a24x4 =w2

a31x1 + a32x2 + a33x3 + a34x4 =w3

a41x1 + a42x2 + a43x3 + a44x4 =w4.
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Gaussian Elimination
The basic idea of Gaussian elimination is to use the first equation to eliminate
the first unknown x1 from the remaining n− 1 equations. Then we use the new
second equation to eliminate the second unknown x2 from the remaining n− 2
equations. With n− 1 such eliminations we obtain a so-called upper triangular
set of equations of the form

b11x1 + b12x2 + b13x3 + b14x4 =y1

b22x2 + b23x3 + b24x4 =y2

b33x3 + b34x4 =y3

b44x4 =y4.

We can solve this system of equations recursively starting from xn (in our case
x4) and proceed with what is called a backward substitution.

Gaussian Elimination
This process can be expressed mathematically as

xm = 1
bmm

(
ym −

n∑
k=m+1

bmkxk

)
m = n− 1, n− 2, . . . , 1. (1)

To arrive at such an upper triangular system of equations, we start by eliminating
the unknown x1 for j = 2, n. We achieve this by multiplying the first equation
by aj1/a11 and then subtract the result from the jth equation. We assume
obviously that a11 6= 0 and that A is not singular.

Gaussian Elimination
Our actual 4× 4 example reads after the first operation


a11 a12 a13 a14
0 (a22 − a21a12

a11
) (a23 − a21a13

a11
) (a24 − a21a14

a11
)

0 (a32 − a31a12
a11

) (a33 − a31a13
a11

) (a34 − a31a14
a11

)
0 (a42 − a41a12

a11
) (a43 − a41a13

a11
) (a44 − a41a14

a11
)



x1
x2
x3
x4

 =


y1

w
(2)
2

w
(2)
3

w
(2)
4

 ,
or

b11x1 + b12x2 + b13x3 + b14x4 =y1

a
(2)
22 x2 + a

(2)
23 x3 + a

(2)
24 x4 =w(2)

2

a
(2)
32 x2 + a

(2)
33 x3 + a

(2)
34 x4 =w(2)

3

a
(2)
42 x2 + a

(2)
43 x3 + a

(2)
44 x4 =w(2)

4 ,

(2)
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Gaussian Elimination
The new coefficients are

b1k = a
(1)
1k k = 1, . . . , n, (3)

where each a(1)
1k is equal to the original a1k element. The other coefficients are

a
(2)
jk = a

(1)
jk −

a
(1)
j1 a

(1)
1k

a
(1)
11

j, k = 2, . . . , n, (4)

with a new right-hand side given by

y1 = w
(1)
1 , w

(2)
j = w

(1)
j −

a
(1)
j1 w

(1)
1

a
(1)
11

j = 2, . . . , n. (5)

We have also set w(1)
1 = w1, the original vector element. We see that the system

of unknowns x1, . . . , xn is transformed into an (n− 1)× (n− 1) problem.

Gaussian Elimination
This step is called forward substitution. Proceeding with these substitutions, we
obtain the general expressions for the new coefficients

a
(m+1)
jk = a

(m)
jk −

a
(m)
jm a

(m)
mk

a
(m)
mm

j, k = m+ 1, . . . , n, (6)

with m = 1, . . . , n− 1 and a right-hand side given by

w
(m+1)
j = w

(m)
j −

a
(m)
jm w

(m)
m

a
(m)
mm

j = m+ 1, . . . , n. (7)

This set of n − 1 elimations leads us to an equations which is solved by back
substitution. If the arithmetics is exact and the matrix A is not singular, then
the computed answer will be exact.

Even though the matrix elements along the diagonal are not zero, numerically
small numbers may appear and subsequent divisions may lead to large numbers,
which, if added to a small number may yield losses of precision. Suppose for
example that our first division in (a22 − a21a12/a11) results in −10−7 and that
a22 is one. one. We are then adding 107 + 1. With single precision this results
in 107.

Linear Algebra Methods
• Gaussian elimination, O(2/3n3) flops, general matrix

• LU decomposition, upper triangular and lower tridiagonal matrices, O(2/3n3)
flops, general matrix. Get easily the inverse, determinant and can solve
linear equations with back-substitution only, O(n2) flops
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• Cholesky decomposition. Real symmetric or hermitian positive definite
matrix, O(1/3n3) flops.

• Tridiagonal linear systems, important for differential equations. Normally
positive definite and non-singular. O(8n) flops for symmetric. Special case
of banded matrices.

• Singular value decomposition

• the QR method will be discussed in chapter 7 in connection with eigenvalue
systems. O(4/3n3) flops.

LU Decomposition
The LU decomposition method means that we can rewrite this matrix as the
product of two matrices L and U where


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1



u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

 .
LU Decomposition
LU decomposition forms the backbone of other algorithms in linear algebra, such
as the solution of linear equations given by

a11x1 + a12x2 + a13x3 + a14x4 =w1

a21x1 + a22x2 + a23x3 + a24x4 =w2

a31x1 + a32x2 + a33x3 + a34x4 =w3

a41x1 + a42x2 + a43x3 + a44x4 =w4.

The above set of equations is conveniently solved by using LU decomposition as
an intermediate step.

The matrix A ∈ Rn×n has an LU factorization if the determinant is different
from zero. If the LU factorization exists and A is non-singular, then the LU
factorization is unique and the determinant is given by

det{A} = det{LU} = det{L}det{U} = u11u22 . . . unn.

LU Decomposition, why?
There are at least three main advantages with LU decomposition compared with
standard Gaussian elimination:
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• It is straightforward to compute the determinant of a matrix

• If we have to solve sets of linear equations with the same matrix but with
different vectors y, the number of FLOPS is of the order n3.

• The inverse is such an operation

LU Decomposition, linear equations
With the LU decomposition it is rather simple to solve a system of linear
equations

a11x1 + a12x2 + a13x3 + a14x4 =w1

a21x1 + a22x2 + a23x3 + a24x4 =w2

a31x1 + a32x2 + a33x3 + a34x4 =w3

a41x1 + a42x2 + a43x3 + a44x4 =w4.

This can be written in matrix form as

Ax = w.

where A and w are known and we have to solve for x. Using the LU
dcomposition we write

Ax ≡ LUx = w.

LU Decomposition, linear equations
The previous equation can be calculated in two steps

Ly = w; Ux = y.

To show that this is correct we use to the LU decomposition to rewrite our
system of linear equations as

LUx = w,

and since the determinant of L is equal to 1 (by construction since the diagonals
of L equal 1) we can use the inverse of L to obtain

Ux = L−1w = y,

which yields the intermediate step

L−1w = y

and as soon as we have y we can obtain x through Ux = y.
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LU Decomposition, why?
For our four-dimentional example this takes the form

y1 =w1

l21y1 + y2 =w2

l31y1 + l32y2 + y3 =w3

l41y1 + l42y2 + l43y3 + y4 =w4.

and

u11x1 + u12x2 + u13x3 + u14x4 =y1

u22x2 + u23x3 + u24x4 =y2

u33x3 + u34x4 =y3

u44x4 =y4

This example shows the basis for the algorithm needed to solve the set of n
linear equations.

LU Decomposition, linear equations
The algorithm goes as follows

• Set up the matrix A and the vector w with their correct dimensions. This
determines the dimensionality of the unknown vector x.

• Then LU decompose the matrix A through a call to the function ludcmp(double a, int n, int indx, double &d).
This functions returns the LU decomposed matrix A, its determinant and
the vector indx which keeps track of the number of interchanges of rows.
If the determinant is zero, the solution is malconditioned.

• Thereafter you call the function lubksb(double a, int n, int indx,
double w) which uses the LU decomposed matrix A and the vector w
and returns x in the same place as w. Upon exit the original content in
w is destroyed. If you wish to keep this information, you should make a
backup of it in your calling function.

LU Decomposition, the inverse of a matrix
If the inverse exists then

A−1A = I,
the identity matrix. With an LU decomposed matrix we can rewrite the last
equation as

LUA−1 = I.
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LU Decomposition, the inverse of a matrix
If we assume that the first column (that is column 1) of the inverse matrix can
be written as a vector with unknown entries

A−1
1 =


a−1

11
a−1

21
. . .
a−1

n1

 ,
then we have a linear set of equations

LU


a−1

11
a−1

21
. . .
a−1

n1

 =


1
0
. . .
0

 .
LU Decomposition, the inverse
In a similar way we can compute the unknow entries of the second column,

LU


a−1

12
a−1

22
. . .
a−1

n2

 =


0
1
. . .
0

 ,
and continue till we have solved all n sets of linear equations.

Using Armadillo to perform an LU decomposition
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