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Introduction
Our emphasis throughout this series of lectures is on understanding the mathe-
matical aspects of different algorithms used in the fields of data analysis and
machine learning.

However, where possible we will emphasize the importance of using available
software. We start thus with a hands-on and top-down approach to machine
learning. The aim is thus to start with relevant data or data we have produced
and use these to introduce statistical data analysis concepts and machine learning
algorithms before we delve into the algorithms themselves. The examples we will
use in the beginning, start with simple polynomials with random noise added.
We will use the Python software package Scikit-Learn and introduce various
machine learning algorithms to make fits of the data and predictions. We move
thereafter to more interesting cases such as data from say experiments (below
we will look at experimental nuclear binding energies as an example). These are
examples where we can easily set up the data and then use machine learning
algorithms included in for example Scikit-Learn.

These examples will serve us the purpose of getting started. Furthermore,
they allow us to catch more than two birds with a stone. They will allow us to
bring in some programming specific topics and tools as well as showing the power
of various Python libraries for machine learning and statistical data analysis.

Here, we will mainly focus on two specific Python packages for Machine
Learning, Scikit-Learn and Tensorflow (see below for links etc). Moreover, the
examples we introduce will serve as inputs to many of our discussions later, as
well as allowing you to set up models and produce your own data and get started
with programming.

c© 1999-2020, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0
license

http://scikit-learn.org/stable/


What is Machine Learning?
Statistics, data science and machine learning form important fields of research in
modern science. They describe how to learn and make predictions from data, as
well as allowing us to extract important correlations about physical process and
the underlying laws of motion in large data sets. The latter, big data sets, appear
frequently in essentially all disciplines, from the traditional Science, Technology,
Mathematics and Engineering fields to Life Science, Law, education research,
the Humanities and the Social Sciences.

It has become more and more common to see research projects on big data
in for example the Social Sciences where extracting patterns from complicated
survey data is one of many research directions. Having a solid grasp of data
analysis and machine learning is thus becoming central to scientific computing
in many fields, and competences and skills within the fields of machine learning
and scientific computing are nowadays strongly requested by many potential
employers. The latter cannot be overstated, familiarity with machine learning
has almost become a prerequisite for many of the most exciting employment
opportunities, whether they are in bioinformatics, life science, physics or finance,
in the private or the public sector. This author has had several students or met
students who have been hired recently based on their skills and competences in
scientific computing and data science, often with marginal knowledge of machine
learning.

Machine learning is a subfield of computer science, and is closely related to
computational statistics. It evolved from the study of pattern recognition in
artificial intelligence (AI) research, and has made contributions to AI tasks like
computer vision, natural language processing and speech recognition. Many of
the methods we will study are also strongly rooted in basic mathematics and
physics research.

Ideally, machine learning represents the science of giving computers the
ability to learn without being explicitly programmed. The idea is that there
exist generic algorithms which can be used to find patterns in a broad class
of data sets without having to write code specifically for each problem. The
algorithm will build its own logic based on the data. You should however always
keep in mind that machines and algorithms are to a large extent developed by
humans. The insights and knowledge we have about a specific system, play a
central role when we develop a specific machine learning algorithm.

Machine learning is an extremely rich field, in spite of its young age. The
increases we have seen during the last three decades in computational capabilities
have been followed by developments of methods and techniques for analyzing
and handling large date sets, relying heavily on statistics, computer science
and mathematics. The field is rather new and developing rapidly. Popular
software packages written in Python for machine learning like Scikit-learn,
Tensorflow, PyTorch and Keras, all freely available at their respective GitHub
sites, encompass communities of developers in the thousands or more. And
the number of code developers and contributors keeps increasing. Not all the
algorithms and methods can be given a rigorous mathematical justification,
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opening up thereby large rooms for experimenting and trial and error and
thereby exciting new developments. However, a solid command of linear algebra,
multivariate theory, probability theory, statistical data analysis, understanding
errors and Monte Carlo methods are central elements in a proper understanding
of many of algorithms and methods we will discuss.

Types of Machine Learning
The approaches to machine learning are many, but are often split into two main
categories. In supervised learning we know the answer to a problem, and let
the computer deduce the logic behind it. On the other hand, unsupervised
learning is a method for finding patterns and relationship in data sets without
any prior knowledge of the system. Some authours also operate with a third
category, namely reinforcement learning. This is a paradigm of learning inspired
by behavioral psychology, where learning is achieved by trial-and-error, solely
from rewards and punishment.

Another way to categorize machine learning tasks is to consider the desired
output of a system. Some of the most common tasks are:

• Classification: Outputs are divided into two or more classes. The goal is to
produce a model that assigns inputs into one of these classes. An example
is to identify digits based on pictures of hand-written ones. Classification
is typically supervised learning.

• Regression: Finding a functional relationship between an input data set
and a reference data set. The goal is to construct a function that maps
input data to continuous output values.

• Clustering: Data are divided into groups with certain common traits,
without knowing the different groups beforehand. It is thus a form of
unsupervised learning.

The methods we cover have three main topics in common, irrespective of whether
we deal with supervised or unsupervised learning. The first ingredient is normally
our data set (which can be subdivided into training and test data), the second
item is a model which is normally a function of some parameters. The model
reflects our knowledge of the system (or lack thereof). As an example, if we
know that our data show a behavior similar to what would be predicted by a
polynomial, fitting our data to a polynomial of some degree would then determin
our model.

The last ingredient is a so-called cost function which allows us to present an
estimate on how good our model is in reproducing the data it is supposed to train.
At the heart of basically all ML algorithms there are so-called minimization
algorithms, often we end up with various variants of gradient methods.
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Software and needed installations
We will make extensive use of Python as programming language and its myriad
of available libraries. You will find Jupyter notebooks invaluable in your work.
You can run R codes in the Jupyter/IPython notebooks, with the immediate
benefit of visualizing your data. You can also use compiled languages like C++,
Rust, Julia, Fortran etc if you prefer. The focus in these lectures will be on
Python.

If you have Python installed (we strongly recommend Python3) and you feel
pretty familiar with installing different packages, we recommend that you install
the following Python packages via pip as

1. pip install numpy scipy matplotlib ipython scikit-learn mglearn sympy
pandas pillow

For Python3, replace pip with pip3.
For OSX users we recommend, after having installed Xcode, to install brew.

Brew allows for a seamless installation of additional software via for example

1. brew install python3

For Linux users, with its variety of distributions like for example the widely
popular Ubuntu distribution, you can use pip as well and simply install Python
as

1. sudo apt-get install python3 (or python for pyhton2.7)

etc etc.

Python installers
If you don’t want to perform these operations separately and venture into the
hassle of exploring how to set up dependencies and paths, we recommend two
widely used distrubutions which set up all relevant dependencies for Python,
namely

• Anaconda,

which is an open source distribution of the Python and R programming languages
for large-scale data processing, predictive analytics, and scientific computing,
that aims to simplify package management and deployment. Package versions
are managed by the package management system conda.

• Enthought canopy

is a Python distribution for scientific and analytic computing distribution and
analysis environment, available for free and under a commercial license.

Furthermore, Google’s Colab is a free Jupyter notebook environment that
requires no setup and runs entirely in the cloud. Try it out!
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Useful Python libraries
Here we list several useful Python libraries we strongly recommend (if you use
anaconda many of these are already there)

• NumPy is a highly popular library for large, multi-dimensional arrays and
matrices, along with a large collection of high-level mathematical functions
to operate on these arrays

• The pandas library provides high-performance, easy-to-use data structures
and data analysis tools

• Xarray is a Python package that makes working with labelled multi-
dimensional arrays simple, efficient, and fun!

• Scipy (pronounced “Sigh Pie”) is a Python-based ecosystem of open-source
software for mathematics, science, and engineering.

• Matplotlib is a Python 2D plotting library which produces publication
quality figures in a variety of hardcopy formats and interactive environments
across platforms.

• Autograd can automatically differentiate native Python and Numpy code.
It can handle a large subset of Python’s features, including loops, ifs,
recursion and closures, and it can even take derivatives of derivatives of
derivatives

• SymPy is a Python library for symbolic mathematics.

• scikit-learn has simple and efficient tools for machine learning, data mining
and data analysis

• TensorFlow is a Python library for fast numerical computing created and
released by Google

• Keras is a high-level neural networks API, written in Python and capable
of running on top of TensorFlow, CNTK, or Theano

• And many more such as pytorch, Theano etc

Installing R, C++, cython or Julia
You will also find it convenient to utilizeR. We will mainly use Python during our
lectures and in various projects and exercises. Those of you already familiar with
R should feel free to continue using R, keeping however an eye on the parallel
Python set ups. Similarly, if you are a Python afecionado, feel free to explore
R as well. Jupyter/Ipython notebook allows you to run R codes interactively
in your browser. The software library R is really tailored for statistical data
analysis and allows for an easy usage of the tools and algorithms we will discuss
in these lectures.

To install R with Jupyter notebook follow the link here
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Installing R, C++, cython, Numba etc
For the C++ aficionados, Jupyter/IPython notebook allows you also to install
C++ and run codes written in this language interactively in the browser. Since
we will emphasize writing many of the algorithms yourself, you can thus opt for
either Python or C++ (or Fortran or other compiled languages) as programming
languages.

To add more entropy, cython can also be used when running your notebooks.
It means that Python with the jupyter notebook setup allows you to integrate
widely popular softwares and tools for scientific computing. Similarly, the Numba
Python package delivers increased performance capabilities with minimal rewrites
of your codes. With its versatility, including symbolic operations, Python offers
a unique computational environment. Your jupyter notebook can easily be
converted into a nicely rendered PDF file or a Latex file for further processing.
For example, convert to latex as
pycod jupyter nbconvert filename.ipynb --to latex

And to add more versatility, the Python package SymPy is a Python library
for symbolic mathematics. It aims to become a full-featured computer algebra
system (CAS) and is entirely written in Python.

Finally, if you wish to use the light mark-up language doconce you can
convert a standard ascii text file into various HTML formats, ipython notebooks,
latex files, pdf files etc with minimal edits. These lectures were generated using
doconce.

Numpy examples and Important Matrix and vector han-
dling packages
There are several central software libraries for linear algebra and eigenvalue
problems. Several of the more popular ones have been wrapped into ofter
software packages like those from the widely used text Numerical Recipes.
The original source codes in many of the available packages are often taken from
the widely used software package LAPACK, which follows two other popular
packages developed in the 1970s, namely EISPACK and LINPACK. We describe
them shortly here.

• LINPACK: package for linear equations and least square problems.

• LAPACK:package for solving symmetric, unsymmetric and generalized
eigenvalue problems. From LAPACK’s website http://www.netlib.org
it is possible to download for free all source codes from this library. Both
C/C++ and Fortran versions are available.

• BLAS (I, II and III): (Basic Linear Algebra Subprograms) are routines that
provide standard building blocks for performing basic vector and matrix
operations. Blas I is vector operations, II vector-matrix operations and
III matrix-matrix operations. Highly parallelized and efficient codes, all
available for download from http://www.netlib.org.
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Basic Matrix Features
Matrix properties reminder.

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The inverse of a matrix is defined by

A−1 ·A = I

Relations Name matrix elements
A = AT symmetric aij = aji

A =
(
AT
)−1 real orthogonal

∑
k aikajk =

∑
k akiakj = δij

A = A∗ real matrix aij = a∗ij
A = A† hermitian aij = a∗ji

A =
(
A†
)−1 unitary

∑
k aika

∗
jk =

∑
k a
∗
kiakj = δij

Some famous Matrices.

• Diagonal if aij = 0 for i 6= j

• Upper triangular if aij = 0 for i > j

• Lower triangular if aij = 0 for i < j

• Upper Hessenberg if aij = 0 for i > j + 1

• Lower Hessenberg if aij = 0 for i < j + 1

• Tridiagonal if aij = 0 for |i− j| > 1

• Lower banded with bandwidth p: aij = 0 for i > j + p

• Upper banded with bandwidth p: aij = 0 for i < j + p

• Banded, block upper triangular, block lower triangular....

More Basic Matrix Features.
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Some Equivalent Statements. For an N ×N matrix A the following prop-
erties are all equivalent

• If the inverse of A exists, A is nonsingular.

• The equation Ax = 0 implies x = 0.

• The rows of A form a basis of RN .

• The columns of A form a basis of RN .

• A is a product of elementary matrices.

• 0 is not eigenvalue of A.

Numpy and arrays
Numpy provides an easy way to handle arrays in Python. The standard way to
import this library is as

Here follows a simple example where we set up an array of ten elements, all
determined by random numbers drawn according to the normal distribution, We
defined a vector x with n = 10 elements with its values given by the Normal
distribution N(0, 1). Another alternative is to declare a vector as follows Here we
have defined a vector with three elements, with x0 = 1, x1 = 2 and x2 = 3. Note
that both Python and C++ start numbering array elements from 0 and on. This
means that a vector with n elements has a sequence of entities x0, x1, x2, . . . , xn−1.
We could also let (recommended) Numpy to compute the logarithms of a specific
array as

In the last example we used Numpy’s unary function np.log. This function
is highly tuned to compute array elements since the code is vectorized and does
not require looping. We normaly recommend that you use the Numpy intrinsic
functions instead of the corresponding log function from Python’s math module.
The looping is done explicitely by the np.log function. The alternative, and
slower way to compute the logarithms of a vector would be to write

We note that our code is much longer already and we need to import the
log function from the math module. The attentive reader will also notice
that the output is [1, 1, 2]. Python interprets automagically our numbers as
integers (like the automatic keyword in C++). To change this we could define
our array elements to be double precision numbers as or simply write them
as double precision numbers (Python uses 64 bits as default for floating point
type variables), that is To check the number of bytes (remember that one byte
contains eight bits for double precision variables), you can use simple use the
itemsize functionality (the array x is actually an object which inherits the
functionalities defined in Numpy) as
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Matrices in Python
Having defined vectors, we are now ready to try out matrices. We can define
a 3× 3 real matrix Â as (recall that we user lowercase letters for vectors and
uppercase letters for matrices)

If we use the shape function we would get (3, 3) as output, that is verifying
that our matrix is a 3× 3 matrix. We can slice the matrix and print for example
the first column (Python organized matrix elements in a row-major order, see
below) as We can continue this was by printing out other columns or rows.
The example here prints out the second column Numpy contains many other
functionalities that allow us to slice, subdivide etc etc arrays. We strongly
recommend that you look up the Numpy website for more details. Useful
functions when defining a matrix are the np.zeros function which declares a
matrix of a given dimension and sets all elements to zero or initializing all
elements to or as unitarily distributed random numbers (see the material on
random number generators in the statistics part)

As we will see throughout these lectures, there are several extremely useful
functionalities in Numpy. As an example, consider the discussion of the covariance
matrix. Suppose we have defined three vectors x̂, ŷ, ẑ with n elements each. The
covariance matrix is defined as

Σ̂ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 ,
where for example

σxy = 1
n

n−1∑
i=0

(xi − x)(yi − y).

The Numpy function np.cov calculates the covariance elements using the factor
1/(n− 1) instead of 1/n since it assumes we do not have the exact mean values.
The following simple function uses the np.vstack function which takes each
vector of dimension 1× n and produces a 3× n matrix Ŵ

Ŵ =


x0 y0 z0
x1 y1 z1
x2 y2 z2
. . . . . . . . .
xn−2 yn−2 zn−2
xn−1 yn−1 zn−1

 ,

which in turn is converted into into the 3× 3 covariance matrix Σ̂ via the
Numpy function np.cov(). We note that we can also calculate the mean value of
each set of samples x̂ etc using the Numpy function np.mean(x). We can also
extract the eigenvalues of the covariance matrix through the np.linalg.eig()
function.
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Meet the Pandas

Another useful Python package is pandas, which is an open source library
providing high-performance, easy-to-use data structures and data analysis tools
for Python. pandas stands for panel data, a term borrowed from econometrics
and is an efficient library for data analysis with an emphasis on tabular data.
pandas has two major classes, the DataFrame class with two-dimensional
data objects and tabular data organized in columns and the class Series with
a focus on one-dimensional data objects. Both classes allow you to index data
easily as we will see in the examples below. pandas allows you also to perform
mathematical operations on the data, spanning from simple reshapings of vectors
and matrices to statistical operations.

The following simple example shows how we can, in an easy way make tables
of our data. Here we define a data set which includes names, place of birth and
date of birth, and displays the data in an easy to read way. We will see repeated
use of pandas, in particular in connection with classification of data.

In the above we have imported pandas with the shorthand pd, the latter
has become the standard way we import pandas. We make then a list of various
variables and reorganize the aboves lists into a DataFrame and then print out
a neat table with specific column labels as Name, place of birth and date of birth.
Displaying these results, we see that the indices are given by the default numbers
from zero to three. pandas is extremely flexible and we can easily change the
above indices by defining a new type of indexing as Thereafter we display the
content of the row which begins with the index Aragorn

We can easily append data to this, for example
Here are other examples where we use the DataFrame functionality to

handle arrays, now with more interesting features for us, namely numbers. We
set up a matrix of dimensionality 10 × 5 and compute the mean value and
standard deviation of each column. Similarly, we can perform mathematial
operations like squaring the matrix elements and many other operations.
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Thereafter we can select specific columns only and plot final results We can
produce a 4× 4 matrix and many other operations.

The Series class is another important class included in pandas. You can view
it as a specialization of DataFrame but where we have just a single column of
data. It shares many of the same features as DataFrame.AswithDataFrame,mostoperationsarevectorized, achievingtherebyahighperformancewhendealingwithcomputationsofarrays, inparticularlabeledarrays.Aswewillseebelowitleadsalsotoaveryconcicecodeclosetothemathematicaloperationswemaybeinterestedin.Formultidimensionalarrays, werecommendstronglyxarray.xarrayhasmuchofthesameflexibilityaspandas, butallowsfortheextensiontohigherdimensionsthantwo.Wewillseeexampleslateroftheusageofbothpandasandxarray.

Reading Data and fitting
In order to study various Machine Learning algorithms, we need to access data.
Acccessing data is an essential step in all machine learning algorithms. In
particular, setting up the so-called design matrix (to be defined below) is often
the first element we need in order to perform our calculations. To set up the
design matrix means reading (and later, when the calculations are done, writing)
data in various formats, The formats span from reading files from disk, loading
data from databases and interacting with online sources like web application
programming interfaces (APIs).

In handling various input formats, as discussed above, we will mainly stay
with pandas, a Python package which allows us, in a seamless and painless way,
to deal with a multitude of formats, from standard csv (comma separated values)
files, via excel, html to hdf5 formats. With pandas and the DataFrame and
Series functionalities we are able to convert text data into the calculational
formats we need for a specific algorithm. And our code is going to be pretty
close the basic mathematical expressions.

Our first data set is going to be a classic from nuclear physics, namely all
available data on binding energies. Don’t be intimidated if you are not familiar
with nuclear physics. It serves simply as an example here of a data set.

We will show some of the strengths of packages like Scikit-Learn in fitting
nuclear binding energies to specific functions using linear regression first. Then,
as a teaser, we will show you how you can easily implement other algorithms
like decision trees and random forests and neural networks.

But before we really start with nuclear physics data, let’s just look at some
simpler polynomial fitting cases, such as, (don’t be offended) fitting straight
lines!

Simple linear regression model using scikit-learn. We start with perhaps
our simplest possible example, using Scikit-Learn to perform linear regression
analysis on a data set produced by us.

What follows is a simple Python code where we have defined a function y
in terms of the variable x. Both are defined as vectors with 100 entries. The
numbers in the vector x̂ are given by random numbers generated with a uniform
distribution with entries xi ∈ [0, 1] (more about probability distribution functions
later). These values are then used to define a function y(x) (tabulated again
as a vector) with a linear dependence on x plus a random noise added via the
normal distribution.

The Numpy functions are imported used the import numpy as np state-
ment and the random number generator for the uniform distribution is called
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using the function np.random.rand(), where we specificy that we want 100
random variables. Using Numpy we define automatically an array with the spec-
ified number of elements, 100 in our case. With the Numpy function randn()
we can compute random numbers with the normal distribution (mean value µ
equal to zero and variance σ2 set to one) and produce the values of y assuming
a linear dependence as function of x

y = 2x+N(0, 1),

where N(0, 1) represents random numbers generated by the normal distribu-
tion. From Scikit-Learn we import then the LinearRegression functionality
and make a prediction ỹ = α+ βx using the function fit(x,y). We call the set
of data (x̂, ŷ) for our training data. The Python package scikit-learn has also
a functionality which extracts the above fitting parameters α and β (see below).
Later we will distinguish between training data and test data.

For plotting we use the Python package matplotlib which produces publication
quality figures. Feel free to explore the extensive gallery of examples. In this
example we plot our original values of x and y as well as the prediction ypredict
(ỹ), which attempts at fitting our data with a straight line.

The Python code follows here.
This example serves several aims. It allows us to demonstrate several aspects

of data analysis and later machine learning algorithms. The immediate visualiza-
tion shows that our linear fit is not impressive. It goes through the data points,
but there are many outliers which are not reproduced by our linear regression.
We could now play around with this small program and change for example the
factor in front of x and the normal distribution. Try to change the function y to

y = 10x+ 0.01×N(0, 1),

where x is defined as before. Does the fit look better? Indeed, by reducing
the role of the noise given by the normal distribution we see immediately that
our linear prediction seemingly reproduces better the training set. However, this
testing ’by the eye’ is obviouly not satisfactory in the long run. Here we have
only defined the training data and our model, and have not discussed a more
rigorous approach to the cost function.

We need more rigorous criteria in defining whether we have succeeded or not
in modeling our training data. You will be surprised to see that many scientists
seldomly venture beyond this ’by the eye’ approach. A standard approach for
the cost function is the so-called χ2 function (a variant of the mean-squared
error (MSE))

χ2 = 1
n

n−1∑
i=0

(yi − ỹi)2

σ2
i

,

where σ2
i is the variance (to be defined later) of the entry yi. We may not

know the explicit value of σ2
i , it serves however the aim of scaling the equations

and make the cost function dimensionless.
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Minimizing the cost function is a central aspect of our discussions to come.
Finding its minima as function of the model parameters (α and β in our case) will
be a recurring theme in these series of lectures. Essentially all machine learning
algorithms we will discuss center around the minimization of the chosen cost
function. This depends in turn on our specific model for describing the data, a
typical situation in supervised learning. Automatizing the search for the minima
of the cost function is a central ingredient in all algorithms. Typical methods
which are employed are various variants of gradient methods. These will be
discussed in more detail later. Again, you’ll be surprised to hear that many
practitioners minimize the above function ”by the eye’, popularly dubbed as ’chi
by the eye’. That is, change a parameter and see (visually and numerically) that
the χ2 function becomes smaller.

There are many ways to define the cost function. A simpler approach is to
look at the relative difference between the training data and the predicted data,
that is we define the relative error (why would we prefer the MSE instead of the
relative error?) as

εrelative = |ŷ −
ˆ̃y|

|ŷ|
.

The squared cost function results in an arithmetic mean-unbiased estimator,
and the absolute-value cost function results in a median-unbiased estimator (in
the one-dimensional case, and a geometric median-unbiased estimator for the
multi-dimensional case). The squared cost function has the disadvantage that it
has the tendency to be dominated by outliers.

We can modify easily the above Python code and plot the relative error
instead

Depending on the parameter in front of the normal distribution, we may
have a small or larger relative error. Try to play around with different training
data sets and study (graphically) the value of the relative error.

As mentioned above, Scikit-Learn has an impressive functionality. We can
for example extract the values of α and β and their error estimates, or the
variance and standard deviation and many other properties from the statistical
data analysis.

Here we show an example of the functionality of Scikit-Learn. The function
coef gives us the parameter β of our fit while intercept yields α. Depending on
the constant in front of the normal distribution, we get values near or far from
alpha = 2 and β = 5. Try to play around with different parameters in front of
the normal distribution. The function meansquarederror gives us the mean
square error, a risk metric corresponding to the expected value of the squared
(quadratic) error or loss defined as

MSE(ŷ, ˆ̃y) = 1
n

n−1∑
i=0

(yi − ỹi)2,
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The smaller the value, the better the fit. Ideally we would like to have an
MSE equal zero. The attentive reader has probably recognized this function as
being similar to the χ2 function defined above.

The r2score function computes R2, the coefficient of determination. It
provides a measure of how well future samples are likely to be predicted by the
model. Best possible score is 1.0 and it can be negative (because the model can
be arbitrarily worse). A constant model that always predicts the expected value
of ŷ, disregarding the input features, would get a R2 score of 0.0.

If ˜̂yi is the predicted value of the i− th sample and yi is the corresponding
true value, then the score R2 is defined as

R2(ŷ, ˜̂y) = 1−
∑n−1
i=0 (yi − ỹi)2∑n−1
i=0 (yi − ȳ)2

,

where we have defined the mean value of ŷ as

ȳ = 1
n

n−1∑
i=0

yi.

Another quantity taht we will meet again in our discussions of regression analysis
is the mean absolute error (MAE), a risk metric corresponding to the expected
value of the absolute error loss or what we call the l1-norm loss. In our discussion
above we presented the relative error. The MAE is defined as follows

MAE(ŷ, ˆ̃y) = 1
n

n−1∑
i=0
|yi − ỹi| .

We present the squared logarithmic (quadratic) error

MSLE(ŷ, ˆ̃y) = 1
n

n−1∑
i=0

(loge(1 + yi)− loge(1 + ỹi))2,

where loge(x) stands for the natural logarithm of x. This error estimate is
best to use when targets having exponential growth, such as population counts,
average sales of a commodity over a span of years etc.

Finally, another cost function is the Huber cost function used in robust
regression.

The rationale behind this possible cost function is its reduced sensitivity
to outliers in the data set. In our discussions on dimensionality reduction and
normalization of data we will meet other ways of dealing with outliers.

The Huber cost function is defined as

Hδ(a) =
{

1
2a

2 for |a| ≤ δ,
δ(|a| − 1

2δ), otherwise.
.

Here a = y − ỹ. We will discuss in more detail these and other functions in
the various lectures. We conclude this part with another example. Instead of a
linear x-dependence we study now a cubic polynomial and use the polynomial
regression analysis tools of scikit-learn.
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To our real data: nuclear binding energies. Brief reminder on masses
and binding energies. Let us now dive into nuclear physics and remind
ourselves briefly about some basic features about binding energies. A basic
quantity which can be measured for the ground states of nuclei is the atomic
mass M(N,Z) of the neutral atom with atomic mass number A and charge Z.
The number of neutrons is N . There are indeed several sophisticated experiments
worldwide which allow us to measure this quantity to high precision (parts per
million even).

Atomic masses are usually tabulated in terms of the mass excess defined by

∆M(N,Z) = M(N,Z)− uA,

where u is the Atomic Mass Unit

u = M(12C)/12 = 931.4940954(57) MeV/c2.

The nucleon masses are

mp = 1.00727646693(9)u,

and
mn = 939.56536(8) MeV/c2 = 1.0086649156(6)u.

In the 2016 mass evaluation of by W.J.Huang, G.Audi, M.Wang, F.G.Kondev,
S.Naimi and X.Xu there are data on masses and decays of 3437 nuclei.

The nuclear binding energy is defined as the energy required to break up a
given nucleus into its constituent parts of N neutrons and Z protons. In terms
of the atomic masses M(N,Z) the binding energy is defined by

BE(N,Z) = ZMHc
2 +Nmnc

2 −M(N,Z)c2,

where MH is the mass of the hydrogen atom and mn is the mass of the neutron.
In terms of the mass excess the binding energy is given by

BE(N,Z) = Z∆Hc
2 +N∆nc

2 −∆(N,Z)c2,

where ∆Hc
2 = 7.2890 MeV and ∆nc

2 = 8.0713 MeV.
A popular and physically intuitive model which can be used to parametrize

the experimental binding energies as function of A, is the so-called liquid drop
model. The ansatz is based on the following expression

BE(N,Z) = a1A− a2A
2/3 − a3

Z2

A1/3 − a4
(N − Z)2

A
,

where A stands for the number of nucleons and the ais are parameters which
are determined by a fit to the experimental data.

To arrive at the above expression we have assumed that we can make the
following assumptions:
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• There is a volume term a1A proportional with the number of nucleons (the
energy is also an extensive quantity). When an assembly of nucleons of
the same size is packed together into the smallest volume, each interior
nucleon has a certain number of other nucleons in contact with it. This
contribution is proportional to the volume.

• There is a surface energy term a2A
2/3. The assumption here is that a

nucleon at the surface of a nucleus interacts with fewer other nucleons than
one in the interior of the nucleus and hence its binding energy is less. This
surface energy term takes that into account and is therefore negative and
is proportional to the surface area.

• There is a Coulomb energy term a3
Z2

A1/3 . The electric repulsion between
each pair of protons in a nucleus yields less binding.

• There is an asymmetry term a4
(N−Z)2

A . This term is associated with the
Pauli exclusion principle and reflects the fact that the proton-neutron
interaction is more attractive on the average than the neutron-neutron and
proton-proton interactions.

We could also add a so-called pairing term, which is a correction term that arises
from the tendency of proton pairs and neutron pairs to occur. An even number
of particles is more stable than an odd number.

Organizing our data. Let us start with reading and organizing our data.
We start with the compilation of masses and binding energies from 2016. After
having downloaded this file to our own computer, we are now ready to read the
file and start structuring our data.

We start with preparing folders for storing our calculations and the data file
over masses and binding energies. We import also various modules that we will
find useful in order to present various Machine Learning methods. Here we focus
mainly on the functionality of scikit-learn.

Before we proceed, we define also a function for making our plots. You can
obviously avoid this and simply set up various matplotlib commands every
time you need them. You may however find it convenient to collect all such
commands in one function and simply call this function.

Our next step is to read the data on experimental binding energies and
reorganize them as functions of the mass number A, the number of protons Z
and neutrons N using pandas. Before we do this it is always useful (unless you
have a binary file or other types of compressed data) to actually open the file
and simply take a look at it!

In particular, the program that outputs the final nuclear masses is written in
Fortran with a specific format. It means that we need to figure out the format
and which columns contain the data we are interested in. Pandas comes with
a function that reads formatted output. After having admired the file, we are
now ready to start massaging it with pandas. The file begins with some basic
format information.
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The data we are interested in are in columns 2, 3, 4 and 11, giving us the
number of neutrons, protons, mass numbers and binding energies, respectively.
We add also for the sake of completeness the element name. The data are in
fixed-width formatted lines and we will covert them into the pandas DataFrame
structure.

We have now read in the data, grouped them according to the variables we
are interested in. We see how easy it is to reorganize the data using pandas.
If we were to do these operations in C/C++ or Fortran, we would have had to
write various functions/subroutines which perform the above reorganizations
for us. Having reorganized the data, we can now start to make some simple fits
using both the functionalities in numpy and Scikit-Learn afterwards.

Now we define five variables which contain the number of nucleons A, the
number of protons Z and the number of neutrons N , the element name and finally
the energies themselves. The next step, and we will define this mathematically
later, is to set up the so-called design matrix. We will throughout call this
matrix X. It has dimensionality p× n, where n is the number of data points
and p are the so-called predictors. In our case here they are given by the number
of polynomials in A we wish to include in the fit. With scikitlearn we are now
ready to use linear regression and fit our data. Pretty simple! Now we can print
measures of how our fit is doing, the coefficients from the fits and plot the final
fit together with our data.

Seeing the wood for the trees. As a teaser, let us now see how we can do
this with decision trees using scikit-learn. Later we will switch to so-called
random forests!

And what about using neural networks? The seaborn package allows us
to visualize data in an efficient way. Note that we use scikit-learn’s multi-layer
perceptron (or feed forward neural network) functionality.

More on flexibility with pandas and xarray. Let us study the Q values
associated with the removal of one or two nucleons from a nucleus. These are
conventionally defined in terms of the one-nucleon and two-nucleon separation
energies. With the functionality in pandas, two to three lines of code will allow
us to plot the separation energies. The neutron separation energy is defined as

Sn = −Qn = BE(N,Z)−BE(N − 1, Z),

and the proton separation energy reads

Sp = −Qp = BE(N,Z)−BE(N,Z − 1).

The two-neutron separation energy is defined as

S2n = −Q2n = BE(N,Z)−BE(N − 2, Z),
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and the two-proton separation energy is given by

S2p = −Q2p = BE(N,Z)−BE(N,Z − 2).

Using say the neutron separation energies (alternatively the proton separation
energies)

Sn = −Qn = BE(N,Z)−BE(N − 1, Z),

we can define the so-called energy gap for neutrons (or protons) as

∆Sn = BE(N,Z)−BE(N − 1, Z)− (BE(N + 1, Z)−BE(N,Z)) ,

or
∆Sn = 2BE(N,Z)−BE(N − 1, Z)−BE(N + 1, Z).

This quantity can in turn be used to determine which nuclei could be interpreted
as magic or not. For protons we would have

∆Sp = 2BE(N,Z)−BE(N,Z − 1)−BE(N,Z + 1).

To calculate say the neutron separation we need to multiply our masses with
the nucleon number A (why?). Thereafter we pick the oxygen isotopes and
simply compute the separation energies with two lines of code (note that most
of the code here is a repeat of what you have seen before).

A first summary
The aim behind these introductory words was to present to you various Python
libraries and their functionalities, in particular libraries like numpy, pandas,
xarray and matplotlib and other that make our life much easier in handling
various data sets and visualizing data.

Furthermore, Scikit-Learn allows us with few lines of code to implement
popular Machine Learning algorithms for supervised learning. Later we will
meet Tensorflow, a powerful library for deep learning. Now it is time to dive
more into the details of various methods. We will start with linear regression
and try to take a deeper look at what it entails.
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