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Reducing the number of degrees of freedom, overarching
view

Many Machine Learning problems involve thousands or even millions of features
for each training instance. Not only does this make training extremely slow, it
can also make it much harder to find a good solution, as we will see. This problem
is often referred to as the curse of dimensionality. Fortunately, in real-world
problems, it is often possible to reduce the number of features considerably,
turning an intractable problem into a tractable one.

Here we will discuss some of the most popular dimensionality reduction
techniques: the principal component analysis (PCA), Kernel PCA, and Locally
Linear Embedding (LLE). Furthermore, we will start by looking at some simple
preprocessing of the data which allow us to rescale the data.

Principal component analysis and its various variants deal with the problem
of fitting a low-dimensional affine subspace to a set of of data points in a high-
dimensional space. With its family of methods it is one of the most used tools
in data modeling, compression and visualization.

Preprocessing our data
Before we proceed however, we will discuss how to preprocess our data. Till

now and in connection with our previous examples we have not met so many
cases where we are too sensitive to the scaling of our data. Normally the data
may need a rescaling and/or may be sensitive to extreme values. Scaling the data
renders our inputs much more suitable for the algorithms we want to employ.

Scikit-Learn has several functions which allow us to rescale the data, nor-
mally resulting in much better results in terms of various accuracy scores.
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The StandardScaler function in Scikit-Learn ensures that for each fea-
ture/predictor we study the mean value is zero and the variance is one (every
column in the design/feature matrix). This scaling has the drawback that it
does not ensure that we have a particular maximum or minimum in our data
set. Another function included in Scikit-Learn is the MinMaxScaler which
ensures that all features are exactly between 0 and 1. The

More preprocessing
The Normalizer scales each data point such that the feature vector has a
euclidean length of one. In other words, it projects a data point on the circle
(or sphere in the case of higher dimensions) with a radius of 1. This means
every data point is scaled by a different number (by the inverse of it’s length).
This normalization is often used when only the direction (or angle) of the data
matters, not the length of the feature vector.

The RobustScaler works similarly to the StandardScaler in that it ensures
statistical properties for each feature that guarantee that they are on the same
scale. However, the RobustScaler uses the median and quartiles, instead of mean
and variance. This makes the RobustScaler ignore data points that are very
different from the rest (like measurement errors). These odd data points are also
called outliers, and might often lead to trouble for other scaling techniques.

Simple preprocessing examples, Franke function and regres-
sion
Simple preprocessing examples, breast cancer data and clas-
sification, Support Vector Machines
We show here how we can use a simple regression case on the breast cancer data
using support vector machines (SVM) as algorithm for classification.

More on Cancer Data, now with Logistic Regression
Why should we think of reducing the dimensionality
In addition to the plot of the features, we study now also the covariance (and the
correlation matrix). We use also Pandas to compute the correlation matrix.

In the above example we note two things. In the first plot we display the
overlap of benign and malignant tumors as functions of the various features in
the Wisconsing breast cancer data set. We see that for some of the features we
can distinguish clearly the benign and malignant cases while for other features
we cannot. This can point to us which features may be of greater interest when
we wish to classify a benign or not benign tumour.

In the second figure we have computed the so-called correlation matrix, which
in our case with thirty features becomes a 30× 30 matrix.

We constructed this matrix using pandas via the statements and then
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Diagonalizing this matrix we can in turn say something about which features
are of relevance and which are not. But before we proceed we need to define
covariance and correlation matrices. This leads us to the classical Principal
Component Analysis (PCA) theorem with applications.

Basic ideas of the Principal Component Analysis (PCA)
The principal component analysis deals with the problem of fitting a low-
dimensional affine subspace S of dimension d much smaller than the totaldimen-
sion D of the problem at hand (our data set). Mathematically it can be
formulated as a statistical problem or a geometric problem. In our discussion of
the theorem for the classical PCA, we will stay with a statistical approach. This
is also what set the scene historically which for the PCA.

We have a data set defined by a design/feature matrix X (see below for its
definition)

• Each data point is determined by p extrinsic (measurement) variables

• We may want to ask the following question: Are there fewer intrinsic
variables (say d << p) that still approximately describe the data?

• If so, these intrinsic variables may tell us something important and finding
these intrinsic variables is what dimension reduction methods do.

Introducing the Covariance and Correlation functions
Before we discuss the PCA theorem, we need to remind ourselves about the
definition of the covariance and the correlation function. These are quantities

Suppose we have defined two vectors x̂ and ŷ with n elements each. The
covariance matrix C is defined as

C[x,y] =
[
cov[x,x] cov[x,y]
cov[y,x] cov[y,y]

]
,

where for example

cov[x,y] = 1
n

n−1∑
i=0

(xi − x)(yi − y).

With this definition and recalling that the variance is defined as

var[x] = 1
n

n−1∑
i=0

(xi − x)2,

we can rewrite the covariance matrix as

C[x,y] =
[

var[x] cov[x,y]
cov[x,y] var[y]

]
.
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The covariance takes values between zero and infinity and may thus lead
to problems with loss of numerical precision for particularly large values. It is
common to scale the covariance matrix by introducing instead the correlation
matrix defined via the so-called correlation function

corr[x,y] = cov[x,y]√
var[x]var[y]

.

The correlation function is then given by values corr[x,y] ∈ [−1, 1]. This
avoids eventual problems with too large values. We can then define the correlation
matrix for the two vectors x and y as

K[x,y] =
[

1 corr[x,y]
corr[y,x] 1

]
,

In the above example this is the function we constructed using pandas.

Correlation Function and Design/Feature Matrix
In our derivation of the various regression algorithms like Ordinary Least
Squares or Ridge regression we defined the design/feature matrix X as

X =


x0,0 x0,1 x0,2 . . . . . . x0,p−1
x1,0 x1,1 x1,2 . . . . . . x1,p−1
x2,0 x2,1 x2,2 . . . . . . x2,p−1
. . . . . . . . . . . . . . . . . .

xn−2,0 xn−2,1 xn−2,2 . . . . . . xn−2,p−1
xn−1,0 xn−1,1 xn−1,2 . . . . . . xn−1,p−1

 ,

with X ∈ Rn×p, with the predictors/features p refering to the column numbers
and the entries n being the row elements. We can rewrite the design/feature
matrix in terms of its column vectors as

X =
[
x0 x1 x2 . . . . . . xp−1

]
,

with a given vector

xT
i =

[
x0,i x1,i x2,i . . . . . . xn−1,i

]
.

With these definitions, we can now rewrite our 2× 2 correaltion/covariance
matrix in terms of a moe general design/feature matrix X ∈ Rn×p. This leads
to a p× p covariance matrix for the vectors xi with i = 0, 1, . . . , p− 1

C[x] =


var[x0] cov[x0,x1] cov[x0,x2] . . . . . . cov[x0,xp−1]

cov[x1,x0] var[x1] cov[x1,x2] . . . . . . cov[x1,xp−1]
cov[x2,x0] cov[x2,x1] var[x2] . . . . . . cov[x2,xp−1]

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
cov[xp−1,x0] cov[xp−1,x1] cov[xp−1,x2] . . . . . . var[xp−1]

 ,
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and the correlation matrix

K[x] =


1 corr[x0,x1] corr[x0,x2] . . . . . . corr[x0,xp−1]

corr[x1,x0] 1 corr[x1,x2] . . . . . . corr[x1,xp−1]
corr[x2,x0] corr[x2,x1] 1 . . . . . . corr[x2,xp−1]

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
corr[xp−1,x0] corr[xp−1,x1] corr[xp−1,x2] . . . . . . 1

 ,

Covariance Matrix Examples
The Numpy function np.cov calculates the covariance elements using the factor
1/(n− 1) instead of 1/n since it assumes we do not have the exact mean values.
The following simple function uses the np.vstack function which takes each
vector of dimension 1× n and produces a 2× n matrix W

W =


x0 y0
x1 y1
x2 y2
. . . . . .
xn−2 yn−2
xn−1 yn−1

 ,
which in turn is converted into into the 2× 2 covariance matrix C via the

Numpy function np.cov(). We note that we can also calculate the mean value of
each set of samples x etc using the Numpy function np.mean(x). We can also
extract the eigenvalues of the covariance matrix through the np.linalg.eig()
function.

Correlation Matrix
The previous example can be converted into the correlation matrix by simply
scaling the matrix elements with the variances. We should also subtract the
mean values for each column. This leads to the following code which sets up the
correlations matrix for the previous example in a more brute force way. Here
we scale the mean values for each column of the design matrix, calculate the
relevant mean values and variances and then finally set up the 2× 2 correlation
matrix (since we have only two vectors).

We see that the matrix elements along the diagonal are one as they should
be and that the matrix is symmetric. Furthermore, diagonalizing this matrix we
easily see that it is a positive definite matrix.

The above procedure with numpy can be made more compact if we use
pandas.

Correlation Matrix with Pandas
We whow here how we can set up the correlation matrix using pandas, as done
in this simple code
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We expand this model to the Franke function discussed above.

Correlation Matrix with Pandas and the Franke function
We note here that the covariance is zero for the first rows and columns since all
matrix elements in the design matrix were set to one (we are fitting the function
in terms of a polynomial of degree n).

This means that the variance for these elements will be zero and will cause
problems when we set up the correlation matrix. We can simply drop these
elements and construct a correlation matrix without these elements.

Rewriting the Covariance and/or Correlation Matrix
We can rewrite the covariance matrix in a more compact form in terms of the
design/feature matrix X as

C[x] = 1
n
XXT = E[XXT ].

To see this let us simply look at a design matrix X ∈ R2×2

X =
[
x00 x01
x10 x11

]
=
[
x0 x1

]
.

If we then compute the expectation value

E[XXT ] = 1
n
XXT =

[
x2

00 + x2
01 x00x10 + x01x11

x10x00 + x11x01 x2
10 + x2

11

]
,

which is just

C[x0,x1] = C[x] =
[

var[x0] cov[x0,x1]
cov[x1,x0] var[x1]

]
,

where we wrote
C[x0,x1] = C[x]

to indicate that this the covariance of the vectors x of the design/feature matrix
X.

It is easy to generalize this to a matrix X ∈ Rn×p.

Towards the PCA theorem
We have that the covariance matrix (the correlation matrix involves a simple
rescaling) is given as

C[x] = 1
n
XXT = E[XXT ].

Let us now assume that we can perform a series of orthogonal transformations
where we employ some orthogonal matrices S. These matrices are defined as S ∈
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Rp×p and obey the orthogonality requirements SST = STS = I. The matrix
can be written out in terms of the column vectors si as S = [s0, s1, . . . , sp−1]
and si ∈ Rp.

Assume also that there is a transformation SC[x]ST = C[y] such that the
new matrix C[y] is diagonal with elements [λ0, λ1, λ2, . . . , λp−1].

That is we have

C[y] = E[SXXTST ] = SC[x]ST ,

since the matrix S is not a data dependent matrix. Multiplying with ST from
the left we have

STC[y] = C[x]ST ,

and since C[y] is diagonal we have for a given eigenvalue i of the covariance
matrix that

ST
i λi = C[x]ST

i .

In the derivation of the PCA theorem we will assume that the eigenvalues
are ordered in descending order, that is λ0 > λ1 > · · · > λp−1.

The eigenvalues tell us then how much we need to stretch the corresponding
eigenvectors. Dimensions with large eigenvalues have thus large variations (large
variance) and define therefore useful dimensions. The data points are more
spread out in the direction of these eigenvectors. Smaller eigenvalues mean on
the other hand that the corresponding eigenvectors are shrunk accordingly and
the data points are tightly bunched together and there is not much variation in
these specific directions. Hopefully then we could leave it out dimensions where
the eigenvalues are very small. If p is very large, we could then aim at reducing
p to l << p and handle only l features/predictors.

The Algorithm before the Theorem
Here’s how we would proceed in setting up the algorithm for the PCA, see also
discussion below here.

• Set up the datapoints for the design/feature matrix X with X ∈ Rn×p,
with the predictors/features p referring to the column numbers and the
entries n being the row elements.

X =


x0,0 x0,1 x0,2 . . . . . . x0,p−1
x1,0 x1,1 x1,2 . . . . . . x1,p−1
x2,0 x2,1 x2,2 . . . . . . x2,p−1
. . . . . . . . . . . . . . . . . .

xn−2,0 xn−2,1 xn−2,2 . . . . . . xn−2,p−1
xn−1,0 xn−1,1 xn−1,2 . . . . . . xn−1,p−1

 ,

• Center the data by subtracting the mean value for each column. This leads
to a new matrix X →X.
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• Compute then the covariance/correlation matrix E[XX
T ].

• Find the eigenpairs of C with eigenvalues [λ0, λ1, . . . , λp−1] and eigenvec-
tors [s0, s1, . . . , sp−1].

• Order the eigenvalue (and the eigenvectors accordingly) in order of decreas-
ing eigenvalues.

• Keep only those l eigenvalues larger than a selected threshold value, dis-
carding thus p − l features since we expect small variations in the data
here.

Writing our own PCA code
We will use a simple example first with two-dimensional data drawn from a
multivariate normal distribution with the following mean and covariance matrix:

µ = (−1, 2) Σ =
[
4 2
2 2

]
Note that the mean refers to each column of data. We will generate n = 1000
points X = {x1, . . . , xN} from this distribution, and store them in the 1000× 2
matrix X.

The following Python code aids in setting up the data and writing out the
design matrix. Note that the function multivariate returns also the covariance
discussed above and that it is defined by dividing by n− 1 instead of n.

Now we are going to implement the PCA algorithm. We will break it down
into various substeps.

Compute the sample mean and center the data. The first step of PCA
is to compute the sample mean of the data and use it to center the data. Recall
that the sample mean is

µn = 1
n

n∑
i=1

xi

and the mean-centered data X̄ = {x̄1, . . . , x̄n} takes the form

x̄i = xi − µn.

When you are done with these steps, print out µn to verify it is close to µ and plot
your mean centered data to verify it is centered at the origin! Compare your code
with the functionality from Scikit-Learn discussed above. The following code
elements perform these operations using pandas or using our own functionality
for doing so. The latter, using numpy is rather simple through the mean()
function.

Alternatively, we could use the functions we discussed earlier for scaling the
data set. That is, we could have used the StandardScaler function in Scikit-
Learn, a function which ensures that for each feature/predictor we study the
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mean value is zero and the variance is one (every column in the design/feature
matrix). You would then not get the same results, since we divide by the variance.
The diagonal covariance matrix elements will then be one, while the non-diagonal
ones need to be divided by 2

√
2 for our specific case.

Compute the sample covariance. Now we are going to use the mean cen-
tered data to compute the sample covariance of the data by using the following
equation

Σn = 1
n− 1

n∑
i=1

x̄T
i x̄i = 1

n− 1

n∑
i=1

(xi − µn)T (xi − µn)

where the data points xi ∈ Rp (here in this example p = 2) are column vectors
and xT is the transpose of x. We can write our own code or simply use either
the functionaly of numpy or that of pandas, as follows Note that the way we
define the covariance matrix here has a factor n−1 instead of n. This is included
in the cov() function by numpy and pandas. Our own code here is not very
elegant and asks for obvious improvements. It is tailored to this specific 2× 2
covariance matrix.

Depending on the number of points n, we will get results that are close to
the covariance values defined above. The plot shows how the data are clustered
around a line with slope close to one. Is this expected?

Diagonalize the sample covariance matrix to obtain the principal com-
ponents. Now we are ready to solve for the principal components! To do
so we diagonalize the sample covariance matrix Σ. We can use the function
np.linalg.eig to do so. It will return the eigenvalues and eigenvectors of Σ.
Once we have these we can perform the following tasks:

• We compute the percentage of the total variance captured by the first
principal component

• We plot the mean centered data and lines along the first and second
principal components

• Then we project the mean centered data onto the first and second principal
components, and plot the projected data.

• Finally, we approximate the data as

xi ≈ x̃i = µn + 〈xi, v0〉v0

where v0 is the first principal component.
Collecting all these steps we can write our own PCA function and compare

this with the functionality included in Scikit-Learn.
The code here outlines some of the elements we could include in the analysis.

Feel free to extend upon this in order to address the above questions.
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This code does not contain all the above elements, but it shows how we can
use Scikit-Learn to extract the eigenvector which corresponds to the largest
eigenvalue. Try to address the questions we pose before the above code. Try
also to change the values of the covariance matrix by making one of the diagonal
elements much larger than the other. What do you observe then?

Classical PCA Theorem
We assume now that we have a design matrix X which has been centered as
discussed above. For the sake of simplicity we skip the overline symbol. The
matrix is defined in terms of the various column vectors [x0,x1, . . . ,xp−1] each
with dimension x ∈ Rn.

We assume also that we have an orthogonal transformation W ∈ Rp×p. We
define the reconstruction error (which is similar to the mean squared error we
have seen before) as

J(W ,Z) = 1
n

∑
i

(xi − xi)2,

with xi = Wzi, where zi is a row vector with dimension Rn of the matrix
Z ∈ Rp×n. When doing PCA we want to reduce this dimensionality.

The PCA theorem states that minimizing the above reconstruction error
corresponds to setting W = S, the orthogonal matrix which diagonalizes the
empirical covariance(correlation) matrix. The optimal low-dimensional encoding
of the data is then given by a set of vectors zi with at most l vectors, with l << p,
defined by the orthogonal projection of the data onto the columns spanned by
the eigenvectors of the covariance(correlations matrix).

The proof which follows will be updated by mid January 2020.

Proof of the PCA Theorem
To show the PCA theorem let us start with the assumption that there is one
vector w0 which corresponds to a solution which minimized the reconstruction
error J . This is an orthogonal vector. It means that we now approximate the
reconstruction error in terms of w0 and z0 as

J(w0, z0) = 1
n

∑
i

(xi − zi0w0)2 = 1
n

∑
i

(xT
i xi − 2zi0w

T
0 xi + z2

i0w
T
0 w0),

which we can rewrite due to the orthogonality of wi as

J(w0, z0) = 1
n

∑
i

(xT
i xi − 2zi0w

T
0 xi + z2

i0).

Minimizing J with respect to the unknown parameters z0i we obtain that

zi0 = wT
0 xi,

where the vectors on the rhs are known.
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PCA Proof continued
We have now found the unknown parameters zi0. These correspond to the
projected coordinates and we can write

J(w0) = 1
p

∑
i

(xT
i xi − z2

i0) = const− 1
n

∑
i

z2
i0.

We can show that the variance of the projected coordinates defined by wT
0 xi

are given by
var[wT

0 xi] = 1
n

∑
i

z2
i0,

since the expectation value of

E[wT
0 xi] = E[zi0] = wT

0 E[xi] = 0,

where we have used the fact that our data are centered.
Recalling our definition of the covariance as

C[x] = 1
n
XXT = E[XXT ],

we have thus that

var[wT
0 xi] = 1

n

∑
i

z2
i0 = wT

0 C[x]w0.

We are almost there, we have obtained a relation between minimizing the
reconstruction error and the variance and the covariance matrix. Minimizing
the error is equivalent to maximizing the variance of the projected data.

The final step
We could trivially maximize the variance of the projection (and thereby minimize
the error in the reconstruction function) by letting the norm-2 of w0 go to
infinity. However, this norm since we want the matrix W to be an orthogonal
matrix, is constrained by ||w0||22 = 1. Imposing this condition via a Lagrange
multiplier we can then in turn maximize

J(w0) = wT
0 C[x]w0 + λ0(1−wT

0 w0).

Taking the derivative with respect to w0 we obtain

∂J(w0)
∂w0

= 2C[x]w0 − 2λ0w0 = 0,

meaning that
C[x]w0 = λ0w0.
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The direction that maximizes the variance (or minimizes the construc-
tion error) is an eigenvector of the covariance matrix! If we left multiply
with wT

0 we have the variance of the projected data is

wT
0 C[x]w0 = λ0.

If we want to maximize the variance (minimize the construction error) we
simply pick the eigenvector of the covariance matrix with the largest eigenvalue.
This establishes the link between the minimization of the reconstruction function
J in terms of an orthogonal matrix and the maximization of the variance and
thereby the covariance of our observations encoded in the design/feature matrix
X.

The proof for the other eigenvectors w1,w2, . . . can be established by ap-
plying the above arguments and using the fact that our basis of eigenvectors is
orthogonal, see Murphy chapter 12.2. The discussion in chapter 12.2 of Murphy’s
text has also a nice link with the Singular Value Decomposition theorem. For
categorical data, see chapter 12.4 and discussion therein.

Additional part of the proof for the other eigenvectors will be added by mid
January 2020.

Geometric Interpretation and link with Singular Value De-
composition
This material will be added by mid January 2020.

Principal Component Analysis
Principal Component Analysis (PCA) is by far the most popular dimensionality
reduction algorithm. First it identifies the hyperplane that lies closest to the
data, and then it projects the data onto it.

The following Python code uses NumPy’s svd() function to obtain all the
principal components of the training set, then extracts the first two principal
components. First we center the data using either pandas or our own code

PCA assumes that the dataset is centered around the origin. Scikit-Learn’s
PCA classes take care of centering the data for you. However, if you implement
PCA yourself (as in the preceding example), or if you use other libraries, don’t
forget to center the data first.

Once you have identified all the principal components, you can reduce the
dimensionality of the dataset down to d dimensions by projecting it onto the
hyperplane defined by the first d principal components. Selecting this hyperplane
ensures that the projection will preserve as much variance as possible.

PCA and scikit-learn
Scikit-Learn’s PCA class implements PCA using SVD decomposition just like we
did before. The following code applies PCA to reduce the dimensionality of the
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dataset down to two dimensions (note that it automatically takes care of centering
the data): After fitting the PCA transformer to the dataset, you can access the
principal components using the components variable (note that it contains the
PCs as horizontal vectors, so, for example, the first principal component is equal
to Another very useful piece of information is the explained variance ratio of
each principal component, available via the explained_variance_ratio variable.
It indicates the proportion of the dataset’s variance that lies along the axis of
each principal component.

Back to the Cancer Data
We can now repeat the above but applied to real data, in this case our breast
cancer data. Here we compute performance scores on the training data using
logistic regression.

We see that our training data after the PCA decomposition has a performance
similar to the non-scaled data.

More on the PCA
Instead of arbitrarily choosing the number of dimensions to reduce down to, it
is generally preferable to choose the number of dimensions that add up to a
sufficiently large portion of the variance (e.g., 95%). Unless, of course, you are
reducing dimensionality for data visualization — in that case you will generally
want to reduce the dimensionality down to 2 or 3. The following code computes
PCA without reducing dimensionality, then computes the minimum number of
dimensions required to preserve 95% of the training set’s variance: You could
then set n_components = d and run PCA again. However, there is a much
better option: instead of specifying the number of principal components you
want to preserve, you can set n_components to be a float between 0.0 and 1.0,
indicating the ratio of variance you wish to preserve:

Incremental PCA
One problem with the preceding implementation of PCA is that it requires
the whole training set to fit in memory in order for the SVD algorithm to run.
Fortunately, Incremental PCA (IPCA) algorithms have been developed: you
can split the training set into mini-batches and feed an IPCA algorithm one
minibatch at a time. This is useful for large training sets, and also to apply PCA
online (i.e., on the fly, as new instances arrive).

Randomized PCA
Scikit-Learn offers yet another option to perform PCA, called Randomized PCA.
This is a stochastic algorithm that quickly finds an approximation of the first
d principal components. Its computational complexity is O(m × d2) + O(d3),
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instead of O(m × n2) + O(n3), so it is dramatically faster than the previous
algorithms when d is much smaller than n.

Kernel PCA
The kernel trick is a mathematical technique that implicitly maps instances

into a very high-dimensional space (called the feature space), enabling nonlinear
classification and regression with Support Vector Machines. Recall that a linear
decision boundary in the high-dimensional feature space corresponds to a complex
nonlinear decision boundary in the original space. It turns out that the same
trick can be applied to PCA, making it possible to perform complex nonlinear
projections for dimensionality reduction. This is called Kernel PCA (kPCA). It
is often good at preserving clusters of instances after projection, or sometimes
even unrolling datasets that lie close to a twisted manifold. For example, the
following code uses Scikit-Learn’s KernelPCA class to perform kPCA with an

LLE
Locally Linear Embedding (LLE) is another very powerful nonlinear dimension-
ality reduction (NLDR) technique. It is a Manifold Learning technique that does
not rely on projections like the previous algorithms. In a nutshell, LLE works by
first measuring how each training instance linearly relates to its closest neighbors
(c.n.), and then looking for a low-dimensional representation of the training set
where these local relationships are best preserved (more details shortly).

Other techniques
There are many other dimensionality reduction techniques, several of which are
available in Scikit-Learn.

Here are some of the most popular:

• Multidimensional Scaling (MDS) reduces dimensionality while trying
to preserve the distances between the instances.

• Isomap creates a graph by connecting each instance to its nearest neigh-
bors, then reduces dimensionality while trying to preserve the geodesic
distances between the instances.

• t-Distributed Stochastic Neighbor Embedding (t-SNE) reduces di-
mensionality while trying to keep similar instances close and dissimilar
instances apart. It is mostly used for visualization, in particular to visual-
ize clusters of instances in high-dimensional space (e.g., to visualize the
MNIST images in 2D).

• Linear Discriminant Analysis (LDA) is actually a classification algorithm,
but during training it learns the most discriminative axes between the
classes, and these axes can then be used to define a hyperplane onto which
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to project the data. The benefit is that the projection will keep classes as
far apart as possible, so LDA is a good technique to reduce dimensionality
before running another classification algorithm such as a Support Vector
Machine (SVM) classifier discussed in the SVM lectures.
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