
PHY321: Harmonic Oscillations,
Damping, Resonances and
time-dependent Forces

Morten Hjorth-Jensen1,2

1Department of Physics and Astronomy and Facility for Rare Ion Beams (FRIB), Michigan State University, USA
2Department of Physics, University of Oslo, Norway

Mar 13, 2021

Aims and Overarching Motivation
Monday. Damped oscillations. Analytical and numerical solutions Reading
suggestion: Taylor sections 5.4-5.5.

Wednesday. No lecture, study day

Friday. Driven oscillations and resonances with examples. Reading sugges-
tion: Taylor sections 5.5-5.6.

Damped Oscillators
We consider only the case where the damping force is proportional to the velocity.
This is counter to dragging friction, where the force is proportional in strength to
the normal force and independent of velocity, and is also inconsistent with wind
resistance, where the magnitude of the drag force is proportional the square of the
velocity. Rolling resistance does seem to be mainly proportional to the velocity.
However, the main motivation for considering damping forces proportional to
the velocity is that the math is more friendly. This is because the differential
equation is linear, i.e. each term is of order x, ẋ, ẍ · · · , or even terms with no
mention of x, and there are no terms such as x2 or xẍ. The equations of motion
for a spring with damping force −bẋ are

mẍ+ bẋ+ kx = 0. (1)

© 1999-2021, "Morten Hjorth-Jensen":"http://mhjgit.github.io/info/doc/web/". Released
under CC Attribution-NonCommercial 4.0 license

http://mhjgit.github.io/info/doc/web/

Harmonic Oscillator, Damping
Just to make the solution a bit less messy, we rewrite this equation as

ẍ+ 2βẋ+ ω2
0x = 0, β ≡ b/2m, ω0 ≡

√
k/m. (2)

Both β and ω have dimensions of inverse time. To find solutions (see appendix
C in the text) you must make an educated guess at the form of the solution. To
do this, first realize that the solution will need an arbitrary normalization A
because the equation is linear. Secondly, realize that if the form is

x = Aert (3)

that each derivative simply brings out an extra power of r. This means that
the Aert factors out and one can simply solve for an equation for r. Plugging
this form into Eq. (2),

r2 + 2βr + ω2
0 = 0. (4)

Harmonic Oscillator, Solutions of Damped Motion
Because this is a quadratic equation there will be two solutions,

r = −β ±
√
β2 − ω2

0 . (5)

We refer to the two solutions as r1 and r2 corresponding to the + and −
roots. As expected, there should be two arbitrary constants involved in the
solution,

x = A1e
r1t +A2e

r2t, (6)

where the coefficients A1 and A2 are determined by initial conditions.
The roots listed above,

√
ω2

0 − β2
0 , will be imaginary if the damping is small

and β < ω0. In that case, r is complex and the factor exp (rt) will have some
oscillatory behavior. If the roots are real, there will only be exponentially
decaying solutions. There are three cases:

Underdamped: β < ω0

x = A1e
−βteiω

′t +A2e
−βte−iω

′t, ω′ ≡
√
ω2

0 − β2 (7)

= (A1 +A2)e−βt cosω′t+ i(A1 −A2)e−βt sinω′t.

Here we have made use of the identity eiω′t = cosω′t + i sinω′t. Because
the constants are arbitrary, and because the real and imaginary parts are both
solutions individually, we can simply consider the real part of the solution alone:

2

x = B1e
−βt cosω′t+B2e

−βt sinω′t, (8)

ω′ ≡
√
ω2

0 − β2.

Critical dampling: β = ω0

In this case the two terms involving r1 and r2 are identical because ω′ = 0.
Because we need to arbitrary constants, there needs to be another solution.
This is found by simply guessing, or by taking the limit of ω′ → 0 from the
underdamped solution. The solution is then

x = Ae−βt +Bte−βt. (9)

The critically damped solution is interesting because the solution approaches
zero quickly, but does not oscillate. For a problem with zero initial velocity, the
solution never crosses zero. This is a good choice for designing shock absorbers
or swinging doors.

Overdamped: β > ω0

x = A1 exp−(β +
√
β2 − ω2

0)t+A2 exp−(β −
√
β2 − ω2

0)t (10)

This solution will also never pass the origin more than once, and then only if
the initial velocity is strong and initially toward zero.

Given b, m and ω0, find x(t) for a particle whose initial position is x = 0 and
has initial velocity v0 (assuming an underdamped solution).

The solution is of the form,

x = e−βt [A1 cos(ω′t) +A2 sinω′t] ,
ẋ = −βx+ ω′e−βt [−A1 sinω′t+A2 cosω′t] .

ω′ ≡
√
ω2

0 − β2, β ≡ b/2m.

From the initial conditions, A1 = 0 because x(0) = 0 and ω′A2 = v0. So

x = v0

ω′
e−βt sinω′t.

Harmonic Oscillator, Solutions
Consider a single solution with no arbitrary constants, which we will call a
particular solution, xp(t). It should be emphasized that this is A particular
solution, because there exists an infinite number of such solutions because the
general solution should have two arbitrary constants. Now consider solutions

3

to the same equation without the driving term, which include two arbitrary
constants. These are called either homogenous solutions or complementary
solutions, and were given above, e.g. Eq. (8) for the underdamped case. The
homogenous solution already incorporates the two arbitrary constants, so any
sum of a homogenous solution and a particular solution will represent the general
solution of the equation. The general solution incorporates the two arbitrary
constants A and B to accommodate the two initial conditions. One could have
picked a different particular solution, i.e. the original particular solution plus
any homogenous solution with the arbitrary constants Ap and Bp chosen at will.
When one adds in the homogenous solution, which has adjustable constants
with arbitrary constants A′ and B′, to the new particular solution, one can
get the same general solution by simply adjusting the new constants such that
A′ + Ap = A and B′ + Bp = B. Thus, the choice of Ap and Bp are irrelevant,
and when choosing the particular solution it is best to make the simplest choice
possible.

Harmonic Oscillator, Particular Solution
To find a particular solution, one first guesses at the form,

xp(t) = D cos(ωt− δ), (11)

and rewrite the differential equation as

D
{
−ω2 cos(ωt− δ)− 2βω sin(ωt− δ) + ω2

0 cos(ωt− δ)
}

= F0

m
cos(ωt). (12)

One can now use angle addition formulas to get

D
{

(−ω2 cos δ + 2βω sin δ + ω2
0 cos δ) cos(ωt) (13)

+(−ω2 sin δ − 2βω cos δ + ω2
0 sin δ) sin(ωt)

}
= F0

m
cos(ωt).

Both the cos and sin terms need to equate if the expression is to hold at all
times. Thus, this becomes two equations

D
{
−ω2 cos δ + 2βω sin δ + ω2

0 cos δ
}

= F0

m
(14)

−ω2 sin δ − 2βω cos δ + ω2
0 sin δ = 0.

After dividing by cos δ, the lower expression leads to

tan δ = 2βω
ω2

0 − ω2 . (15)

4

Solving with Driven Oscillations
Using the identities tan2 +1 = csc2 and sin2 + cos2 = 1, one can also express
sin δ and cos δ,

sin δ = 2βω√
(ω2

0 − ω2)2 + 4ω2β2
, (16)

cos δ = (ω2
0 − ω2)√

(ω2
0 − ω2)2 + 4ω2β2

Inserting the expressions for cos δ and sin δ into the expression for D,

D = F0/m√
(ω2

0 − ω2)2 + 4ω2β2
. (17)

For a given initial condition, e.g. initial displacement and velocity, one must
add the homogenous solution then solve for the two arbitrary constants. However,
because the homogenous solutions decay with time as e−βt, the particular solution
is all that remains at large times, and is therefore the steady state solution.
Because the arbitrary constants are all in the homogenous solution, all memory
of the initial conditions are lost at large times, t >> 1/β.

The amplitude of the motion, D, is linearly proportional to the driving force
(F0/m), but also depends on the driving frequency ω. For small β the maximum
will occur at ω = ω0. This is referred to as a resonance. In the limit β → 0 the
amplitude at resonance approaches infinity.

Alternative Derivation for Driven Oscillators
Here, we derive the same expressions as in Equations (11) and (17) but express
the driving forces as

F (t) = F0e
iωt, (18)

rather than as F0 cosωt. The real part of F is the same as before. For the
differential equation,

ẍ+ 2βẋ+ ω2
0x = F0

m
eiωt, (19)

one can treat x(t) as an imaginary function. Because the operations d2/dt2

and d/dt are real and thus do not mix the real and imaginary parts of x(t),
Eq. (19) is effectively 2 equations. Because eωt = cosωt+ i sinωt, the real part
of the solution for x(t) gives the solution for a driving force F0 cosωt, and the
imaginary part of x corresponds to the case where the driving force is F0 sinωt.
It is rather easy to solve for the complex x in this case, and by taking the real
part of the solution, one finds the answer for the cosωt driving force.

5

We assume a simple form for the particular solution

xp = Deiωt, (20)

where D is a complex constant.
From Eq. (19) one inserts the form for xp above to get

D
{
−ω2 + 2iβω + ω2

0
}
eiωt = (F0/m)eiωt, (21)

D = F0/m

(ω2
0 − ω2) + 2iβω .

The norm and phase for D = |D|e−iδ can be read by inspection,

|D| = F0/m√
(ω2

0 − ω2)2 + 4β2ω2
, tan δ = 2βω

ω2
0 − ω2 . (22)

This is the same expression for δ as before. One then finds xp(t),

xp(t) = < (F0/m)eiωt−iδ√
(ω2

0 − ω2)2 + 4β2ω2
(23)

= (F0/m) cos(ωt− δ)√
(ω2

0 − ω2)2 + 4β2ω2
.

This is the same answer as before. If one wished to solve for the case where
F (t) = F0 sinωt, the imaginary part of the solution would work

xp(t) = = (F0/m)eiωt−iδ√
(ω2

0 − ω2)2 + 4β2ω2
(24)

= (F0/m) sin(ωt− δ)√
(ω2

0 − ω2)2 + 4β2ω2
.

Damped and Driven Oscillator
Consider the damped and driven harmonic oscillator worked out above. Given
F0,m, β and ω0, solve for the complete solution x(t) for the case where F =
F0 sinωt with initial conditions x(t = 0) = 0 and v(t = 0) = 0. Assume the
underdamped case.

The general solution including the arbitrary constants includes both the
homogenous and particular solutions,

x(t) = F0

m

sin(ωt− δ)√
(ω2

0 − ω2)2 + 4β2ω2
+A cosω′te−βt +B sinω′te−βt.

6

The quantities δ and ω′ are given earlier, ω′ =
√
ω2

0 − β2, δ = tan−1(2βω/(ω2
0−

ω2). Here, solving the problem means finding the arbitrary constants A and B.
Satisfying the initial conditions for the initial position and velocity:

x(t = 0) = 0 = −η sin δ +A,

v(t = 0) = 0 = ωη cos δ − βA+ ω′B,

η ≡ F0

m

1√
(ω2

0 − ω2)2 + 4β2ω2
.

The problem is now reduced to 2 equations and 2 unknowns, A and B. The
solution is

A = η sin δ, B = −ωη cos δ + βη sin δ
ω′

. (25)

Resonance Widths; the Q factor
From above, the particular solution for a driving force, F = F0 cosωt, is

xp(t) = F0/m√
(ω2

0 − ω2)2 + 4ω2β2
cos(ωt − δ), (26)

δ = tan−1
(

2βω
ω2

0 − ω2

)
.

If one fixes the driving frequency ω and adjusts the fundamental frequency
ω0 =

√
k/m, the maximum amplitude occurs when ω0 = ω because that is when

the term from the denominator (ω2
0 − ω2)2 + 4ω2β2 is at a minimum. This is

akin to dialing into a radio station. However, if one fixes ω0 and adjusts the
driving frequency one minimize with respect to ω, e.g. set

d

dω

[
(ω2

0 − ω2)2 + 4ω2β2] = 0, (27)

and one finds that the maximum amplitude occurs when ω =
√
ω2

0 − 2β2. If
β is small relative to ω0, one can simply state that the maximum amplitude is

xmax ≈
F0

2mβω0
. (28)

4ω2β2

(ω2
0 − ω2)2 + 4ω2β2 = 1

2 . (29)

For small damping this occurs when ω = ω0 ± β, so the FWHM ≈ 2β. For
the purposes of tuning to a specific frequency, one wants the width to be as

7

small as possible. The ratio of ω0 to FWHM is known as the quality factor, or
Q factor,

Q ≡ ω0

2β . (30)

Numerical Studies of Driven Oscillations
Solving the problem of driven oscillations numerically gives us much more
flexibility to study different types of driving forces. We can reuse our earlier
code by simply adding a driving force. If we stay in the x-direction only this
can be easily done by adding a term Fext(x, t). Note that we have kept it rather
general here, allowing for both a spatial and a temporal dependence.

Before we dive into the code, we need to briefly remind ourselves about the
equations we started with for the case with damping, namely

m
d2x

dt2
+ b

dx

dt
+ kx(t) = 0,

with no external force applied to the system.
Let us now for simplicty assume that our external force is given by

Fext(t) = F0 cos (ωt),

where F0 is a constant (what is its dimension?) and ω is the frequency of the
applied external driving force. Small question: would you expect energy to be
conserved now?

Introducing the external force into our lovely differential equation and dividing
by m and introducing ω2

0 =
√
k/m we have

d2x

dt2
+ b

m

dx

dt
+ ω2

0x(t) = F0

m
cos (ωt),

Thereafter we introduce a dimensionless time τ = tω0 and a dimensionless
frequency ω̃ = ω/ω0. We have then

d2x

dτ2 + b

mω0

dx

dτ
+ x(τ) = F0

mω2
0

cos (ω̃τ),

Introducing a new amplitude F̃ = F0/(mω2
0) (check dimensionality again) we

have
d2x

dτ2 + b

mω0

dx

dτ
+ x(τ) = F̃ cos (ω̃τ).

Our final step, as we did in the case of various types of damping, is to define
γ = b/(2mω0) and rewrite our equations as

d2x

dτ2 + 2γ dx
dτ

+ x(τ) = F̃ cos (ω̃τ).

This is the equation we will code below using the Euler-Cromer method.

8

https://en.wikipedia.org/wiki/Q_factor

Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt
import os

Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

from pylab import plt, mpl
plt.style.use('seaborn')
mpl.rcParams['font.family'] = 'serif'

DeltaT = 0.001
#set up arrays
tfinal = 20 # in dimensionless time
n = ceil(tfinal/DeltaT)
set up arrays for t, v, and x
t = np.zeros(n)
v = np.zeros(n)
x = np.zeros(n)
Initial conditions as one-dimensional arrays of time
x0 = 1.0
v0 = 0.0
x[0] = x0
v[0] = v0
gamma = 0.2
Omegatilde = 0.5
Ftilde = 1.0
Start integrating using Euler-Cromer's method
for i in range(n-1):

Set up the acceleration
Here you could have defined your own function for this
a = -2*gamma*v[i]-x[i]+Ftilde*cos(t[i]*Omegatilde)
update velocity, time and position
v[i+1] = v[i] + DeltaT*a
x[i+1] = x[i] + DeltaT*v[i+1]
t[i+1] = t[i] + DeltaT

Plot position as function of time

9

fig, ax = plt.subplots()
ax.set_ylabel('x[m]')
ax.set_xlabel('t[s]')
ax.plot(t, x)
fig.tight_layout()
save_fig("ForcedBlockEulerCromer")
plt.show()

In the above example we have focused on the Euler-Cromer method. This
method has a local truncation error which is proportional to ∆t2 and thereby
a global error which is proportional to ∆t. We can improve this by using the
Runge-Kutta family of methods. The widely popular Runge-Kutta to fourth
order or just RK4 has indeed a much better truncation error. The RK4 method
has a global error which is proportional to ∆t.

Let us revisit this method and see how we can implement it for the above
example.

Differential Equations, Runge-Kutta methods
Runge-Kutta (RK) methods are based on Taylor expansion formulae, but yield
in general better algorithms for solutions of an ordinary differential equation.
The basic philosophy is that it provides an intermediate step in the computation
of yi+1.

To see this, consider first the following definitions

dy

dt
= f(t, y), (31)

and
y(t) =

∫
f(t, y)dt, (32)

and
yi+1 = yi +

∫ ti+1

ti

f(t, y)dt. (33)

To demonstrate the philosophy behind RK methods, let us consider the
second-order RK method, RK2. The first approximation consists in Taylor
expanding f(t, y) around the center of the integration interval ti to ti+1, that
is, at ti + h/2, h being the step. Using the midpoint formula for an integral,
defining y(ti + h/2) = yi+1/2 and ti + h/2 = ti+1/2, we obtain∫ ti+1

ti

f(t, y)dt ≈ hf(ti+1/2, yi+1/2) +O(h3). (34)

This means in turn that we have

yi+1 = yi + hf(ti+1/2, yi+1/2) +O(h3). (35)

10

However, we do not know the value of yi+1/2. Here comes thus the next
approximation, namely, we use Euler’s method to approximate yi+1/2. We have
then

y(i+1/2) = yi + h

2
dy

dt
= y(ti) + h

2 f(ti, yi). (36)

This means that we can define the following algorithm for the second-order
Runge-Kutta method, RK2.

k1 = hf(ti, yi), (37)

k2 = hf(ti+1/2, yi + k1/2), (38)
with the final value

yi+i ≈ yi + k2 +O(h3). (39)
The difference between the previous one-step methods is that we now need

an intermediate step in our evaluation, namely ti + h/2 = t(i+1/2) where we
evaluate the derivative f . This involves more operations, but the gain is a better
stability in the solution.

The fourth-order Runge-Kutta, RK4, has the following algorithm

k1 = hf(ti, yi) k2 = hf(ti + h/2, yi + k1/2)

k3 = hf(ti + h/2, yi + k2/2) k4 = hf(ti + h, yi + k3)
with the final result

yi+1 = yi + 1
6 (k1 + 2k2 + 2k3 + k4) .

Thus, the algorithm consists in first calculating k1 with ti, y1 and f as inputs.
Thereafter, we increase the step size by h/2 and calculate k2, then k3 and finally
k4. The global error goes as O(h4).

However, at this stage, if we keep adding different methods in our main
program, the code will quickly become messy and ugly. Before we proceed thus,
we will now introduce functions that enbody the various methods for solving
differential equations. This means that we can separate out these methods in
own functions and files (and later as classes and more generic functions) and
simply call them when needed. Similarly, we could easily encapsulate various
forces or other quantities of interest in terms of functions. To see this, let us
bring up the code we developed above for the simple sliding block, but now only
with the simple forward Euler method. We introduce two functions, one for the
simple Euler method and one for the force.

Note that here the forward Euler method does not know the specific force
function to be called. It receives just an input the name. We can easily change
the force by adding another function.

def ForwardEuler(v,x,t,n,Force):
for i in range(n-1):

v[i+1] = v[i] + DeltaT*Force(v[i],x[i],t[i])
x[i+1] = x[i] + DeltaT*v[i]
t[i+1] = t[i] + DeltaT

11

def SpringForce(v,x,t):
note here that we have divided by mass and we return the acceleration

return -2*gamma*v-x+Ftilde*cos(t*Omegatilde)

It is easy to add a new method like the Euler-Cromer
def ForwardEulerCromer(v,x,t,n,Force):

for i in range(n-1):
a = Force(v[i],x[i],t[i])
v[i+1] = v[i] + DeltaT*a
x[i+1] = x[i] + DeltaT*v[i+1]
t[i+1] = t[i] + DeltaT

and the Velocity Verlet method (be careful with time-dependence here, it is not
an ideal method for non-conservative forces))

def VelocityVerlet(v,x,t,n,Force):
for i in range(n-1):

a = Force(v[i],x[i],t[i])
x[i+1] = x[i] + DeltaT*v[i]+0.5*a*DeltaT*DeltaT
anew = Force(v[i],x[i+1],t[i+1])
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
t[i+1] = t[i] + DeltaT

Finally, we can now add the Runge-Kutta2 method via a new function
def RK2(v,x,t,n,Force):

for i in range(n-1):
Setting up k1

k1x = DeltaT*v[i]
k1v = DeltaT*Force(v[i],x[i],t[i])

Setting up k2
vv = v[i]+k1v*0.5
xx = x[i]+k1x*0.5
k2x = DeltaT*vv
k2v = DeltaT*Force(vv,xx,t[i]+DeltaT*0.5)

Final result
x[i+1] = x[i]+k2x
v[i+1] = v[i]+k2v
t[i+1] = t[i]+DeltaT

Finally, we can now add the Runge-Kutta2 method via a new function

def RK4(v,x,t,n,Force):
for i in range(n-1):

Setting up k1
k1x = DeltaT*v[i]
k1v = DeltaT*Force(v[i],x[i],t[i])

Setting up k2
vv = v[i]+k1v*0.5
xx = x[i]+k1x*0.5
k2x = DeltaT*vv
k2v = DeltaT*Force(vv,xx,t[i]+DeltaT*0.5)

Setting up k3
vv = v[i]+k2v*0.5
xx = x[i]+k2x*0.5
k3x = DeltaT*vv
k3v = DeltaT*Force(vv,xx,t[i]+DeltaT*0.5)

Setting up k4
vv = v[i]+k3v

12

xx = x[i]+k3x
k4x = DeltaT*vv
k4v = DeltaT*Force(vv,xx,t[i]+DeltaT)

Final result
x[i+1] = x[i]+(k1x+2*k2x+2*k3x+k4x)/6.
v[i+1] = v[i]+(k1v+2*k2v+2*k3v+k4v)/6.
t[i+1] = t[i] + DeltaT

The Runge-Kutta family of methods are particularly useful when we have a
time-dependent acceleration. If we have forces which depend only the spatial
degrees of freedom (no velocity and/or time-dependence), then energy conserving
methods like the Velocity Verlet or the Euler-Cromer method are preferred.
As soon as we introduce an explicit time-dependence and/or add dissipitave
forces like friction or air resistance, then methods like the family of Runge-Kutta
methods are well suited for this. The code below uses the Runge-Kutta4 methods.

DeltaT = 0.001
#set up arrays
tfinal = 20 # in dimensionless time
n = ceil(tfinal/DeltaT)
set up arrays for t, v, and x
t = np.zeros(n)
v = np.zeros(n)
x = np.zeros(n)
Initial conditions (can change to more than one dim)
x0 = 1.0
v0 = 0.0
x[0] = x0
v[0] = v0
gamma = 0.2
Omegatilde = 0.5
Ftilde = 1.0
Start integrating using Euler's method
Note that we define the force function as a SpringForce
RK4(v,x,t,n,SpringForce)

Plot position as function of time
fig, ax = plt.subplots()
ax.set_ylabel('x[m]')
ax.set_xlabel('t[s]')
ax.plot(t, x)
fig.tight_layout()
save_fig("ForcedBlockRK4")
plt.show()

Principle of Superposition and Periodic Forces (Fourier Trans-
forms)
If one has several driving forces, F (t) =

∑
n Fn(t), one can find the particular

solution to each Fn, xpn(t), and the particular solution for the entire driving
force is

xp(t) =
∑
n

xpn(t). (40)

13

This is known as the principal of superposition. It only applies when the
homogenous equation is linear. If there were an anharmonic term such as x3 in the
homogenous equation, then when one summed various solutions, x = (

∑
n xn)2,

one would get cross terms. Superposition is especially useful when F (t) can be
written as a sum of sinusoidal terms, because the solutions for each sinusoidal
(sine or cosine) term is analytic, as we saw above.

Driving forces are often periodic, even when they are not sinusoidal. Period-
icity implies that for some time τ

F (t+ τ) = F (t). (41)

One example of a non-sinusoidal periodic force is a square wave. Many
components in electric circuits are non-linear, e.g. diodes, which makes many
wave forms non-sinusoidal even when the circuits are being driven by purely
sinusoidal sources.

The code here shows a typical example of such a square wave generated using
the functionality included in the scipy Python package. We have used a period
of τ = 0.2.

import numpy as np
import math
from scipy import signal
import matplotlib.pyplot as plt

number of points
n = 500
start and final times
t0 = 0.0
tn = 1.0
Period
t = np.linspace(t0, tn, n, endpoint=False)
SqrSignal = np.zeros(n)
SqrSignal = 1.0+signal.square(2*np.pi*5*t)
plt.plot(t, SqrSignal)
plt.ylim(-0.5, 2.5)
plt.show()

For the sinusoidal example studied above the period is τ = 2π/ω. However,
higher harmonics can also satisfy the periodicity requirement. In general, any
force that satisfies the periodicity requirement can be expressed as a sum over
harmonics,

F (t) = f0

2 +
∑
n>0

fn cos(2nπt/τ) + gn sin(2nπt/τ). (42)

One can write down the answer for xpn(t), by substituting fn/m or gn/m
for F0/m into Eq.s (23) or (24) respectively. By writing each factor 2nπt/τ as
nωt, with ω ≡ 2π/τ ,

F (t) = f0

2 +
∑
n>0

fn cos(nωt) + gn sin(nωt). (43)

14

The solutions for x(t) then come from replacing ω with nω for each term in
the particular solution in Equations (11) and (17),

xp(t) = f0

2k +
∑
n>0

αn cos(nωt− δn) + βn sin(nωt− δn), (44)

αn = fn/m√
((nω)2 − ω2

0) + 4β2n2ω2
,

βn = gn/m√
((nω)2 − ω2

0) + 4β2n2ω2
,

δn = tan−1
(

2βnω
ω2

0 − n2ω2

)
.

Because the forces have been applied for a long time, any non-zero damping
eliminates the homogenous parts of the solution, so one need only consider the
particular solution for each n.

The problem will considered solved if one can find expressions for the coef-
ficients fn and gn, even though the solutions are expressed as an infinite sum.
The coefficients can be extracted from the function F (t) by

fn = 2
τ

∫ τ/2

−τ/2
dt F (t) cos(2nπt/τ), (45)

gn = 2
τ

∫ τ/2

−τ/2
dt F (t) sin(2nπt/τ).

To check the consistency of these expressions and to verify Eq. (45), one can
insert the expansion of F (t) in Eq. (43) into the expression for the coefficients
in Eq. (45) and see whether

fn =? 2
τ

∫ τ/2

−τ/2
dt

{
f0

2 +
∑
m>0

fm cos(mωt) + gm sin(mωt)
}

cos(nωt).(46)

Immediately, one can throw away all the terms with gm because they convolute
an even and an odd function. The term with f0/2 disappears because cos(nωt)
is equally positive and negative over the interval and will integrate to zero. For
all the terms fm cos(mωt) appearing in the sum, one can use angle addition
formulas to see that cos(mωt) cos(nωt) = (1/2)(cos[(m+ n)ωt] + cos[(m− n)ωt].
This will integrate to zero unless m = n. In that case the m = n term gives∫ τ/2

−τ/2
dt cos2(mωt) = τ

2 , (47)

and

15

fn =? 2
τ

∫ τ/2

−τ/2
dt fn/2 (48)

= fn X.

The same method can be used to check for the consistency of gn.
Consider the driving force:

F (t) = At/τ, − τ/2 < t < τ/2, F (t+ τ) = F (t). (49)

Find the Fourier coefficients fn and gn for all n using Eq. (45).
Only the odd coefficients enter by symmetry, i.e. fn = 0. One can find gn

integrating by parts,

gn = 2
τ

∫ τ/2

−τ/2
dt sin(nωt)At

τ
(50)

u = t, dv = sin(nωt)dt, v = − cos(nωt)/(nω),

gn = −2A
nωτ2

∫ τ/2

−τ/2
dt cos(nωt) + 2A−t cos(nωt)

nωτ2

∣∣∣∣τ/2

−τ/2
.

The first term is zero because cos(nωt) will be equally positive and negative
over the interval. Using the fact that ωτ = 2π,

gn = − 2A
2nπ cos(nωτ/2) (51)

= − A

nπ
cos(nπ)

= A

nπ
(−1)n+1.

Fourier Series
More text will come here, chpater 5.7-5.8 of Taylor are discussed during the
lectures. The code here uses the Fourier series discussed in chapter 5.7 for a square
wave signal. The equations for the coefficients are are discussed in Taylor section
5.7, see Example 5.4. The code here visualizes the various approximations given
by Fourier series compared with a square wave with period T = 0.2, witth 0.1
and max value F = 2. We see that when we increase the number of components
in the Fourier series, the Fourier series approximation gets closes and closes to
the square wave signal.

import numpy as np
import math
from scipy import signal
import matplotlib.pyplot as plt

16

number of points
n = 500
start and final times
t0 = 0.0
tn = 1.0
Period
T =0.2
Max value of square signal
Fmax= 2.0
Width of signal
Width = 0.1
t = np.linspace(t0, tn, n, endpoint=False)
SqrSignal = np.zeros(n)
FourierSeriesSignal = np.zeros(n)
SqrSignal = 1.0+signal.square(2*np.pi*5*t+np.pi*Width/T)
a0 = Fmax*Width/T
FourierSeriesSignal = a0
Factor = 2.0*Fmax/np.pi
for i in range(1,500):

FourierSeriesSignal += Factor/(i)*np.sin(np.pi*i*Width/T)*np.cos(i*t*2*np.pi/T)
plt.plot(t, SqrSignal)
plt.plot(t, FourierSeriesSignal)
plt.ylim(-0.5, 2.5)
plt.show()

17

