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Aims and Overarching Motivation
Monday. Summary on forces and conservation laws, with additional examples.
Begin harmonic oscillations.

Reading suggestion: Taylor chapters 3 and 4 for the summary on forces
and conservation laws. Taylor section 5.1 for start harmonic oscillations.

Wednesday. Harmonic oscillations, basic equations and formalism Reading
suggestions: Taylor sections 5.1-5.2

Friday. Harmonic oscillations, damped motion. Reading suggestion: Taylor
sections 5.3-5.4.

Harmonic Oscillator
The harmonic oscillator is omnipresent in physics. Although you may think of
this as being related to springs, it, or an equivalent mathematical representation,
appears in just about any problem where a mode is sitting near its potential
energy minimum. At that point, ∂xV (x) = 0, and the first non-zero term (aside
from a constant) in the potential energy is that of a harmonic oscillator. In
a solid, sound modes (phonons) are built on a picture of coupled harmonic
oscillators, and in relativistic field theory the fundamental interactions are also
built on coupled oscillators positioned infinitesimally close to one another in
space. The phenomena of a resonance of an oscillator driven at a fixed frequency
plays out repeatedly in atomic, nuclear and high-energy physics, when quantum
mechanically the evolution of a state oscillates according to e−iEt and exciting
discrete quantum states has very similar mathematics as exciting discrete states
of an oscillator.

© 1999-2021, "Morten Hjorth-Jensen":"http://mhjgit.github.io/info/doc/web/". Released
under CC Attribution-NonCommercial 4.0 license

http://mhjgit.github.io/info/doc/web/


Harmonic Oscillator, deriving the Equations
The potential energy for a single particle as a function of its position x can
be written as a Taylor expansion about some point b (we are considering a
one-dimensional problem here)

V (x) = V (b)+(x−b)dV (x)
dx

|b+
1
2!(x−b)

2 d
2V (x)
dx2 |b+

1
3!(x−b)

3V (x)(3)|b+· · · (1)

If the position b is at the minimum of the resonance, the first two non-zero terms
of the potential are

V (x) ≈V (b) + 1
2! (x− b)

2 d
2V (x)
dx2 |b, (2)

=V (b) + 1
2k(x− b)2, k ≡ d2V (x)

dx2 |b,

F =− dV (x)
dx

= −k(x− b).

Analyzing the equations
Our equation of motion is, with the only force given by the one-dimensional
spring force,

m
d2x

dt2
= −kx.

Defining the natural frequency ω2
0 = k/m we can rewrite this equation as

d2x

dt2
= −ω2

0x.

We call this a natural frequency since it is defined by the constants that describe
our system, the spring constant k and the mass m of the object.

We can as usual split this equation of motion into one equation for the
derivative of the velocity and

dv

dt
= −ω2

0x,

and
dx

dt
= v.

The solution to the equations of motion is given by

x(t) = A cos (ω0t) +B sin (ω0t),

where A and B are in general complex constants to be determined by the initial
conditions.
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Checking the Solution
Inserting the solution into the equation of motion we have

d2x

dt2
= −ω2

0x,

we have
d2x

dt2
= −Aω2

0 cos (ω0t)−Bω2
0 sin (ω0t),

and the right-hand side is just −ω2
0x(t). Thus, inserting the solution into the

differential equation shows that we obtain the same original differential equation.

Initial condition example
Let us assume that our initial time t0 = 0s and that the initial position x(t0) = x0
and that v0 = 0 (we skip units here). This gives us

x(t = 0) = x0 = A,

and it leaves B undetermined. Taking the derivative of x we obtain the velocity

v(t) = −Aω0 sin (ω0t) +Bω0 cos (ω0t),

and with
v(t = 0) = 0 = B,

we see that our solution with these initial conditions becomes

x(t) = x0 cos (ω0t).

Math Digression
From our first homework (exercise 1) we have that (we switch to ω instead of
ω0)

cos (ωt) =
∞∑
n=0

(−1)n (ωt)2n

(2n)! ,

and

sin (ωt) =
∞∑
n=0

(−1)n (ωt)2n+1

(2n+ 1)! ,

and that we could write

exp (±ıωt) = cos (ωt) +±ı sin (ωt).

This means (show this) that we can write our solution in terms of new
constant C and D as

x(t) = C exp (ıωt) +D exp (−ıωt).
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To see the relation between these two forms we note that we can write our
original solution x(t) = A cos (ωt) +B sin (ωt) as

x(t) = (C +D) cos (ωt) + ı(C −D) sin (ωt),
meaning that we have A = C +D and B = ı(C −D).

More Math Manipulations
We can also rewrite the solution in a simpler way. We define a new constant
A =

√
B2

1 +B2
2 which can be thought as the hypotenuse of a right-angle triangle

with sides B1 and B2 and B1 = A cos (δ) and B2 = A sin (δ).
We have then

x(t) = A

[
B1

A
cos (ωt) + B2

A
sin (ωt)

]
,

which becomes

x(t) = A [cos (δ) cos (ωt) + sin (δ) sin (ωt)] ,

and using the trigonometric relations for addition of angles we have

x(t) = A cos (ωt− δ),

where δ is a so-called phase shift.

Energy Conservation
Our energy is given by the kinetic energy and the harmonic oscillator potential
energy, that is we have (for a one-dimensional harmonic oscillator potential)

E = 1
2mv

2 + 1
2kx

2.

We assume that we have initial conditions v0 = 0 (no kinetic energy) and
x(t = 0) = x0. With these initial conditions we have

x(t) = x0 cos (ω0t),

and the velocity is given by

v(t) = −x0ω0 sin (ω0t),

The energy is conserved (as we have discussed before) and at t = t0 = 0 we
have thus

E0 = 1
2kx

2
0.

At a time t 6= 0 we have

E(t) = 1
2mv

2 + 1
2kx

2 = 1
2mx

2
0ω

2
0 sin2 (ω0t) + 1

2kx
2
0 cos2 (ω0t),
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Recalling that ω2
0 = k/m we get

E(t) = 1
2kx

2
0 sin2 (ω0t) + 1

2kx
2
0 cos2 (ω0t) = 1

2kx
2
0 = E0.

Energy is thus conserved

The mathematical pendulum
Note: Figure to be inserted.

We consider a pendulum of length l attached to the roof as illustrated in the
figure (see handwritten notes from Wednesday Feb 24).

The pendulum consists of a rod and a small object attached to the rod. The
mass of this object is m and it is the motion of this object we are concerned
with. The distance from the object to the roof is r and we have |r| = l.

The angle between the y-axis and the rod is φ. The forces at play are the
gravitational force and a tension force from the rod to the object. The net for is

F net = T + G = T sin (φ)e1 + T cos (φ)e2 −mge2,

and with
r = l sin (φ)e1 + l cos (φ)e2,

the equation of motion becomes

m
d2r

dt2
= T + G = T sin (φ)e1 + T cos (φ)e2 −mge2.

Finding the equations for the x- and y-directions
Using the chain rule we can find the first derivative of r

dr

dt
= l

dφ

dt
cos (φ)e1 − l

dφ

dt
sin (φ)e2,

and thereafter the second derivative in the x-direction as

d2r

dt2
e1 = l

d2φ

dt2
cos (φ)− l(dφ

dt
)2 sin (φ),

and in the y direction

d2r

dt2
e2 = −l d

2φ

dt2
sin (φ)− l(dφ

dt
)2 cos (φ).

Collecting terms
We can now set up the equations of motion in the x and y directions and get for
the x-direction

ml
d2φ

dt2
cos (φ)−ml(dφ

dt
)2 sin (φ) = T sin (φ),
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and for the y-direction

−mld
2φ

dt2
sin (φ)−ml(dφ

dt
)2 cos (φ) = T cos (φ)−mg.

This looks ugly!
Let us rewrite

ml
d2φ

dt2
cos (φ) =

[
ml(dφ

dt
)2 + T

]
sin (φ),

and
−mld

2φ

dt2
sin (φ) +mg =

[
ml(dφ

dt
)2 + T cos (φ)

]
.

Still not so nice.

Simple trick
How can we simplify the above equations, rewritten here

ml
d2φ

dt2
cos (φ) =

[
ml(dφ

dt
)2 + T

]
sin (φ),

and
−mld

2φ

dt2
sin (φ) +mg =

[
ml(dφ

dt
)2 + T

]
cos (φ).

We multiply the first equation with cosφ and the second one with sinφ and then
subtract the two equations. We get then

−mld
2φ

dt2
(cos (φ))2 −mld

2φ

dt2
(sin (φ))2 +mg sin (φ) = 0,

leading to

ml
d2φ

dt2
= −mg sin (φ).

We are almost there.

Last step
We divide by m and l and we have the famous non-linear in φ (due to the sine
function) equation for the pendulumn

d2φ

dt2
= −g

l
sin (φ).

Introducing the natural frequency ω2
0 = g/l we can rewrite the equation as

d2φ

dt2
= −ω2

0 sin (φ).
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If we now assume that the angle is very small, we can approximate sin (φ) ≈ φ
and we have essentially the same equation as we had for harmonic oscillations,
that is

d2φ

dt2
= −ω2

0φ.

The solution to this equation is again given by

φ(t) = A cos (ω0t) +B sin (ω0t).

For the general case, we have to resort to numerical solutions.

Damped Oscillators
We consider only the case where the damping force is proportional to the velocity.
This is counter to dragging friction, where the force is proportional in strength to
the normal force and independent of velocity, and is also inconsistent with wind
resistance, where the magnitude of the drag force is proportional the square of the
velocity. Rolling resistance does seem to be mainly proportional to the velocity.
However, the main motivation for considering damping forces proportional to
the velocity is that the math is more friendly. This is because the differential
equation is linear, i.e. each term is of order x, ẋ, ẍ · · · , or even terms with no
mention of x, and there are no terms such as x2 or xẍ. The equations of motion
for a spring with damping force −bẋ are

mẍ+ bẋ+ kx = 0. (3)

Harmonic Oscillator, Damping
Just to make the solution a bit less messy, we rewrite this equation as

ẍ+ 2βẋ+ ω2
0x = 0, β ≡ b/2m, ω0 ≡

√
k/m. (4)

Both β and ω have dimensions of inverse time. To find solutions (see appendix
C in the text) you must make an educated guess at the form of the solution. To
do this, first realize that the solution will need an arbitrary normalization A
because the equation is linear. Secondly, realize that if the form is

x = Aert (5)

that each derivative simply brings out an extra power of r. This means that
the Aert factors out and one can simply solve for an equation for r. Plugging
this form into Eq. (4),

r2 + 2βr + ω2
0 = 0. (6)
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Harmonic Oscillator, Solutions of Damped Motion
Because this is a quadratic equation there will be two solutions,

r = −β ±
√
β2 − ω2

0 . (7)

We refer to the two solutions as r1 and r2 corresponding to the + and −
roots. As expected, there should be two arbitrary constants involved in the
solution,

x = A1e
r1t +A2e

r2t, (8)

where the coefficients A1 and A2 are determined by initial conditions.
The roots listed above,

√
ω2

0 − β2
0 , will be imaginary if the damping is small

and β < ω0. In that case, r is complex and the factor ert will have some
oscillatory behavior. If the roots are real, there will only be exponentially
decaying solutions. There are three cases:

Underdamped: β < ω0

x = A1e
−βteiω

′t +A2e
−βte−iω

′t, ω′ ≡
√
ω2

0 − β2 (9)

= (A1 +A2)e−βt cosω′t+ i(A1 −A2)e−βt sinω′t.

Here we have made use of the identity eiω′t = cosω′t + i sinω′t. Because
the constants are arbitrary, and because the real and imaginary parts are both
solutions individually, we can simply consider the real part of the solution alone:

x = B1e
−βt cosω′t+B2e

−βt sinω′t, (10)

ω′ ≡
√
ω2

0 − β2.

Critical dampling: β = ω0

In this case the two terms involving r1 and r2 are identical because ω′ = 0.
Because we need to arbitrary constants, there needs to be another solution.
This is found by simply guessing, or by taking the limit of ω′ → 0 from the
underdamped solution. The solution is then

x = Ae−βt +Bte−βt. (11)

The critically damped solution is interesting because the solution approaches
zero quickly, but does not oscillate. For a problem with zero initial velocity, the
solution never crosses zero. This is a good choice for designing shock absorbers
or swinging doors.
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Overdamped: β > ω0

x = A1 exp−(β +
√
β2 − ω2

0)t+A2 exp−(β −
√
β2 − ω2

0)t (12)

This solution will also never pass the origin more than once, and then only if
the initial velocity is strong and initially toward zero.

Given b, m and ω0, find x(t) for a particle whose initial position is x = 0 and
has initial velocity v0 (assuming an underdamped solution).

The solution is of the form,

x = e−βt [A1 cos(ω′t) +A2 sinω′t] ,
ẋ = −βx+ ω′e−βt [−A1 sinω′t+A2 cosω′t] .

ω′ ≡
√
ω2

0 − β2, β ≡ b/2m.

From the initial conditions, A1 = 0 because x(0) = 0 and ω′A2 = v0. So

x = v0

ω′
e−βt sinω′t.

Sinusoidally Driven Oscillators
Here, we consider the force

F = −kx− bẋ+ F0 cosωt, (13)

which leads to the differential equation

ẍ+ 2βẋ+ ω2
0x = (F0/m) cosωt. (14)

Harmonic Oscillator, Solutions
Consider a single solution with no arbitrary constants, which we will call a par-
ticular solution, xp(t). It should be emphasized that this is A particular solution,
because there exists an infinite number of such solutions because the general
solution should have two arbitrary constants. Now consider solutions to the
same equation without the driving term, which include two arbitrary constants.
These are called either homogenous solutions or complementary solutions, and
were given in the previous section, e.g. Eq. (10) for the underdamped case. The
homogenous solution already incorporates the two arbitrary constants, so any
sum of a homogenous solution and a particular solution will represent the general
solution of the equation. The general solution incorporates the two arbitrary
constants A and B to accommodate the two initial conditions. One could have
picked a different particular solution, i.e. the original particular solution plus
any homogenous solution with the arbitrary constants Ap and Bp chosen at will.
When one adds in the homogenous solution, which has adjustable constants
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with arbitrary constants A′ and B′, to the new particular solution, one can
get the same general solution by simply adjusting the new constants such that
A′ + Ap = A and B′ + Bp = B. Thus, the choice of Ap and Bp are irrelevant,
and when choosing the particular solution it is best to make the simplest choice
possible.

Harmonic Oscillator, Particular Solution
To find a particular solution, one first guesses at the form,

xp(t) = D cos(ωt− δ), (15)

and rewrite the differential equation as

D
{
−ω2 cos(ωt− δ)− 2βω sin(ωt− δ) + ω2

0 cos(ωt− δ)
}

= F0

m
cos(ωt). (16)

One can now use angle addition formulas to get

D
{

(−ω2 cos δ + 2βω sin δ + ω2
0 cos δ) cos(ωt) (17)

+(−ω2 sin δ − 2βω cos δ + ω2
0 sin δ) sin(ωt)

}
= F0

m
cos(ωt).

Both the cos and sin terms need to equate if the expression is to hold at all
times. Thus, this becomes two equations

D
{
−ω2 cos δ + 2βω sin δ + ω2

0 cos δ
}

= F0

m
(18)

−ω2 sin δ − 2βω cos δ + ω2
0 sin δ = 0.

After dividing by cos δ, the lower expression leads to

tan δ = 2βω
ω2

0 − ω2 . (19)

Solving with Driven Oscillations
Using the identities tan2 +1 = csc2 and sin2 + cos2 = 1, one can also express
sin δ and cos δ,

sin δ = 2βω√
(ω2

0 − ω2)2 + 4ω2β2
, (20)

cos δ = (ω2
0 − ω2)√

(ω2
0 − ω2)2 + 4ω2β2
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Inserting the expressions for cos δ and sin δ into the expression for D,

D = F0/m√
(ω2

0 − ω2)2 + 4ω2β2
. (21)

For a given initial condition, e.g. initial displacement and velocity, one must
add the homogenous solution then solve for the two arbitrary constants. However,
because the homogenous solutions decay with time as e−βt, the particular solution
is all that remains at large times, and is therefore the steady state solution.
Because the arbitrary constants are all in the homogenous solution, all memory
of the initial conditions are lost at large times, t >> 1/β.

The amplitude of the motion, D, is linearly proportional to the driving force
(F0/m), but also depends on the driving frequency ω. For small β the maximum
will occur at ω = ω0. This is referred to as a resonance. In the limit β → 0 the
amplitude at resonance approaches infinity.

Alternative Derivation for Driven Oscillators
Here, we derive the same expressions as in Equations (15) and (21) but express
the driving forces as

F (t) = F0e
iωt, (22)

rather than as F0 cosωt. The real part of F is the same as before. For the
differential equation,

ẍ+ 2βẋ+ ω2
0x = F0

m
eiωt, (23)

one can treat x(t) as an imaginary function. Because the operations d2/dt2

and d/dt are real and thus do not mix the real and imaginary parts of x(t),
Eq. (23) is effectively 2 equations. Because eωt = cosωt+ i sinωt, the real part
of the solution for x(t) gives the solution for a driving force F0 cosωt, and the
imaginary part of x corresponds to the case where the driving force is F0 sinωt.
It is rather easy to solve for the complex x in this case, and by taking the real
part of the solution, one finds the answer for the cosωt driving force.

We assume a simple form for the particular solution

xp = Deiωt, (24)

where D is a complex constant.
From Eq. (23) one inserts the form for xp above to get

D
{
−ω2 + 2iβω + ω2

0
}
eiωt = (F0/m)eiωt, (25)

D = F0/m

(ω2
0 − ω2) + 2iβω .
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The norm and phase for D = |D|e−iδ can be read by inspection,

|D| = F0/m√
(ω2

0 − ω2)2 + 4β2ω2
, tan δ = 2βω

ω2
0 − ω2 . (26)

This is the same expression for δ as before. One then finds xp(t),

xp(t) = < (F0/m)eiωt−iδ√
(ω2

0 − ω2)2 + 4β2ω2
(27)

= (F0/m) cos(ωt− δ)√
(ω2

0 − ω2)2 + 4β2ω2
.

This is the same answer as before. If one wished to solve for the case where
F (t) = F0 sinωt, the imaginary part of the solution would work

xp(t) = = (F0/m)eiωt−iδ√
(ω2

0 − ω2)2 + 4β2ω2
(28)

= (F0/m) sin(ωt− δ)√
(ω2

0 − ω2)2 + 4β2ω2
.

Damped and Driven Oscillator
Consider the damped and driven harmonic oscillator worked out above. Given
F0,m, β and ω0, solve for the complete solution x(t) for the case where F =
F0 sinωt with initial conditions x(t = 0) = 0 and v(t = 0) = 0. Assume the
underdamped case.

The general solution including the arbitrary constants includes both the
homogenous and particular solutions,

x(t) = F0

m

sin(ωt− δ)√
(ω2

0 − ω2)2 + 4β2ω2
+A cosω′te−βt +B sinω′te−βt.

The quantities δ and ω′ are given earlier in the section, ω′ =
√
ω2

0 − β2, δ =
tan−1(2βω/(ω2

0 − ω2). Here, solving the problem means finding the arbitrary
constants A and B. Satisfying the initial conditions for the initial position and
velocity:

x(t = 0) = 0 = −η sin δ +A,

v(t = 0) = 0 = ωη cos δ − βA+ ω′B,

η ≡ F0

m

1√
(ω2

0 − ω2)2 + 4β2ω2
.

The problem is now reduced to 2 equations and 2 unknowns, A and B. The
solution is
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A = η sin δ, B = −ωη cos δ + βη sin δ
ω′

. (29)

Resonance Widths; the Q factor
From the previous two sections, the particular solution for a driving force,
F = F0 cosωt, is

xp(t) = F0/m√
(ω2

0 − ω2)2 + 4ω2β2
cos(ωt − δ), (30)

δ = tan−1
(

2βω
ω2

0 − ω2

)
.

If one fixes the driving frequency ω and adjusts the fundamental frequency
ω0 =

√
k/m, the maximum amplitude occurs when ω0 = ω because that is when

the term from the denominator (ω2
0 − ω2)2 + 4ω2β2 is at a minimum. This is

akin to dialing into a radio station. However, if one fixes ω0 and adjusts the
driving frequency one minimize with respect to ω, e.g. set

d

dω

[
(ω2

0 − ω2)2 + 4ω2β2] = 0, (31)

and one finds that the maximum amplitude occurs when ω =
√
ω2

0 − 2β2. If
β is small relative to ω0, one can simply state that the maximum amplitude is

xmax ≈
F0

2mβω0
. (32)

4ω2β2

(ω2
0 − ω2)2 + 4ω2β2 = 1

2 . (33)

For small damping this occurs when ω = ω0 ± β, so the FWHM ≈ 2β. For
the purposes of tuning to a specific frequency, one wants the width to be as
small as possible. The ratio of ω0 to FWHM is known as the quality factor, or
Q factor,

Q ≡ ω0

2β . (34)

Our Sliding Block Code
Here we study first the case without additional friction term and scale our
equation in terms of a dimensionless time τ .
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Let us remind ourselves about the differential equation we want to solve (the
general case with damping due to friction)

m
d2x

dt2
+ b

dx

dt
+ kx(t) = 0.

We divide by m and introduce ω2
0 =

√
k/m and obtain

d2x

dt2
+ b

m

dx

dt
+ ω2

0x(t) = 0.

Harmonic Oscillator, Sliding Block
Thereafter we introduce a dimensionless time τ = tω0 (check that the dimen-
sionality is correct) and rewrite our equation as

d2x

dτ2 + b

mω0

dx

dτ
+ x(τ) = 0,

which gives us
d2x

dτ2 + b

mω0

dx

dτ
+ x(τ) = 0.

Harmonic Oscillator, Sliding Block, Numerical Aspects
We then define γ = b/(2mω0) and rewrite our equations as

d2x

dτ2 + 2γ dx
dτ

+ x(τ) = 0.

This is the equation we will code below. The first version employs the Euler-
Cromer method.

# Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt
import os

# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)
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def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

from pylab import plt, mpl
plt.style.use('seaborn')
mpl.rcParams['font.family'] = 'serif'

DeltaT = 0.001
#set up arrays
tfinal = 20 # in dimensionless time
n = ceil(tfinal/DeltaT)
# set up arrays for t, v, and x
t = np.zeros(n)
v = np.zeros(n)
x = np.zeros(n)
# Initial conditions as simple one-dimensional arrays of time
x0 = 1.0
v0 = 0.0
x[0] = x0
v[0] = v0
gamma = 0.0
# Start integrating using Euler-Cromer's method
for i in range(n-1):

# Set up the acceleration
# Here you could have defined your own function for this
a = -2*gamma*v[i]-x[i]
# update velocity, time and position
v[i+1] = v[i] + DeltaT*a
x[i+1] = x[i] + DeltaT*v[i+1]
t[i+1] = t[i] + DeltaT

# Plot position as function of time
fig, ax = plt.subplots()
#ax.set_xlim(0, tfinal)
ax.set_ylabel('x[m]')
ax.set_xlabel('t[s]')
ax.plot(t, x)
fig.tight_layout()
save_fig("BlockEulerCromer")
plt.show()

When setting up the value of γ we see that for γ = 0 we get the simple
oscillatory motion with no damping. Choosing γ < 1 leads to the classical
underdamped case with oscillatory motion, but where the motion comes to an
end.

Choosing γ = 1 leads to what normally is called critical damping and γ > 1
leads to critical overdamping. Try it out and try also to change the initial
position and velocity. Setting γ = 1 yields a situation, as discussed above, where
the solution approaches quickly zero and does not oscillate. With zero initial
velocity it will never cross zero.

15


