
PHY321: Conservative forces, examples
and theory

Morten Hjorth-Jensen1,2

1Department of Physics and Astronomy and Facility for Rare Ion Beams (FRIB), Michigan State University, USA
2Department of Physics, University of Oslo, Norway

February 13-17

Aims and Overarching Motivation
Monday February 13. Discussion of conditions for conservative forces and
summing up our discussion on conservative forces. Discussion of potential
surfaces and their interpretations.

• Video of lecture

Reading suggestion: Taylor sections 4.6, 4.9, 4.10 and 5.1 and 5.2 on harmonic
oscillations.

Wednesday February 15. The Earth-Sun problem and energy-conserving
algorithms and how to encode in more efficient ways various algorithms for
solving the equations of motion (Euler, Euler-Cromer and Velocity Verlet).

• Links to Julie’s material on code reusability

Reading suggestions: Taylor section 4.8 and these notes

Friday February 17. Working on the Earth-Sun problem and hw 5. Hints
on various exercises.

Reading suggestions: Taylor chapters 3 and 4 and these notes.

The curl of a force and link between Line Integrals and
conservative forces
The concept of line integrals plays an important role in our discussion of energy
conservation, our definition of potentials and conservative forces.

© 1999-2023, "Morten Hjorth-Jensen":"http://mhjgit.github.io/info/doc/web/". Released
under CC Attribution-NonCommercial 4.0 license

http://mhjgit.github.io/info/doc/web/
https://youtu.be/3GCGhSN4nIw
https://github.com/mhjensen/Physics321/tree/master/doc/pub/week7/ipynb

Let us remind ourselves of some the basic elements (most of you may have
seen this in a calculus course under the general topic of vector fields).

We define a path integration C, that is we integrate from a point r1 to a
point r2. Let us assume that the path C is represented by an arc length s. In
three dimension we have the following representation of C

r(s) = x(s)e1 + y(s)e2 + z(s)e3,

then our integral of a function f(x, y, z) along the path C is defined as∫
C

f(x, y, z)ds =
∫ b

a

f (x(s), y(s), z(s)) ds,

where the initial and final points are a and b, respectively.

Exactness and Independence of Path
With the definition of a line integral, we can in turn set up the theorem of
independence of integration path.

Let us define f(x, y, z), g(x, y, z) and h(x, y, z) to be functions which are
defined and continuous in a domain D in space. Then a line integral like the
above is said to be independent of path in D, if for every pair of endpoints a
and b in D the value of the integral is the same for all paths C in D starting
from a point a and ending in a point b. The integral depends thus only on the
integration limits and not on the path.

Differential Forms
An expression of the form

fdx + gdy + hdz,

where f , g and h are functions defined in D, is a called a first-order differential
form in three variables. The form is said to be exact if it is the differential

du = ∂u

∂x
dx + ∂u

∂y
dy + ∂u

∂z
dz,

of a differentiable function u(x, y, z) everywhere in D, that is

du = fdx + gdy + hdz.

It is said to be exact if and only if we can then set

f = ∂u

∂x
,

and
g = ∂u

∂y
,

and
h = ∂u

∂z
,

everywhere in the domain D.

2

In Vector Language
In vector language the above means that the differential form

fdx + gdy + hdz,

is exact in D if and only if the vector function (it could be a force, or velocity,
acceleration or other vectors we encounter in this course)

F = fe1 + ge2 + he3,

is the gradient of a function u(x, y, z)

v = ∇u = ∂u

∂x
e1 + ∂u

∂y
e2 + ∂u

∂z
e3.

Path Independence Theorem
If this is the case, we can state the path independence theorem which states that
with functions f(x, y, z), g(x, y, z) and h(x, y, z) that fulfill the above exactness
conditions, the line integral ∫

C

(fdx + gdy + hdz) ,

is independent of path in D if and only if the differential form under the integral
sign is exact in D.

This is the path independence theorem.
We will not give a proof of the theorem. You can find this in any vector

analysis chapter in a mathematics textbook.
We note however that the path integral from a point p to a final point q is

given by∫ q

p

(fdx + gdy + hdz) =
∫ q

p

(
∂u

∂x
dx + ∂u

∂y
dy + ∂u

∂z
dz

)
=

∫ q

p

du.

Assume now that we have a dependence on a variable s for x, y and z. We
have then∫ q

p

du =
∫ s2

s1

du

ds
ds = u(x(s), y(s), z(s))|s=s2

s=s1
= u(q) − u(p).

This last equation∫ q

p

(fdx + gdy + hdz) = u(q) − u(p),

is the analogue of the usual formula∫ b

a

f(x)dx = F (x)|ba = F (b) − F (a),

with F ′(x) = f(x).

3

Work-Energy Theorem again
We remember that a the work done by a force F = fe1 + ge2 + he3 on a
displacemnt dr is

W =
∫

C

F dr =
∫

C

(fdx + gdy + hdz).

From the path independence theorem, we know that this has to result in
the difference between the two endpoints only. This is exact if and only if
the force is the force F is the gradient of a scalar function u. We call this
scalar function, which depends only the positions x, y, z for the potential energy
V (x, y, z) = V (r).

We have thus
F (r) ∝ ∇V (r),

and we define this as
F (r) = −∇V (r).

Such a force is called a conservative force. The above expression can be
used to demonstrate energy conservation.

Additional Theorem
Finally we can define the criterion for exactness and independence of path. This
theorem states that if f(x, y, z), g(x, y, z) and h(x, y, z) are continuous functions
with continuous first partial derivatives in the domain D, then the line integral∫

C

(fdx + gdy + hdz) ,

is independent of path in D when

∂h

∂y
= ∂g

∂z
,

and
∂f

∂z
= ∂h

∂x
,

and
∂g

∂x
= ∂f

∂y
.

This leads to the curl of F being zero

∇ × F = ∇ × (−∇V (r)) = 0!

4

Summarizing
A conservative force F is a defined as the partial derivative of a scalar potential
which depends only on the position,

F (r) = −∇V (r).

This leads to conservation of energy and a path independent line integral as
long as the curl of the force is zero, that is

∇ × F = ∇ × (−∇V (r)) = 0.

Graphing the potential energy and what we can learn from
that
This is taken from homework 4, exercises 5.

A particle is under the influence of a force F = −kx + kx3/α2, where k and
α are constants and k is positive.

Determine V (x) and discuss the motion. It can be convenient here to make
a sketch/plot of the potential as function of x.

We assume that the potential is zero at say x = 0. Integrating the force from
zero to x gives

V (x) = −
∫ x

0
F (x′)dx′ = kx2

2 − kx4

4α2 .

Making the plot
The following code plots the potential. We have chosen values of α = k = 1.0.
Feel free to experiment with other values. We plot V (x) for a domain of
x ∈ [−2, 2].

import numpy as np
import matplotlib.pyplot as plt
import math

x0= -2.0
xn = 2.1
Deltax = 0.1
alpha = 1.0
k = 1.0
#set up arrays
x = np.arange(x0,xn,Deltax)
n = np.size(x)
V = np.zeros(n)
V = 0.5*k*x*x-0.25*k*(x**4)/(alpha*alpha)
plt.plot(x, V)
plt.xlabel("x")
plt.ylabel("V")
plt.show()

5

Interpreting the results
From the plot here (with the chosen parameters)

1. we see that with a given initial velocity we can overcome the potential
energy barrier

and leave the potential well for good.

1. If the initial velocity is smaller (see Final interpretations following next)
than a certain value, it will remain trapped in the potential well and
oscillate back and forth around x = 0. This is where the potential has its
minimum value.

2. If the kinetic energy at x = 0 equals the maximum potential energy, the
object will oscillate back and forth between the minimum potential energy
at x = 0 and the turning points where the kinetic energy turns zero. These
are the so-called non-equilibrium points.

Final interpretations
What happens when the energy of the particle is E = (1/4)kα2? Hint: what is
the maximum value of the potential energy?

From the figure we see that the potential has a minimum at at x = 0 then rises
until x = α before falling off again. The maximum potential, V (x ± α) = kα2/4.
If the energy is higher, the particle cannot be contained in the well. The turning
points are thus defined by x = ±α. And from the previous plot you can easily
see that this is the case (α = 1 in the abovementioned Python code).

The Earth-Sun system
We will now venture into a study of a system which is energy conserving. The aim
is to see if we (since it is not possible to solve the general equations analytically)
we can develop stable numerical algorithms whose results we can trust!

We solve the equations of motion numerically. We will also compute quantities
like the energy numerically.

We start with a simpler case first, the Earth-Sun system in two dimensions
only. The gravitational force FG on the earth from the sun is

FG = −GM⊙ME

r3 r,

where G is the gravitational constant,

ME = 6 × 1024Kg,

the mass of Earth,
M⊙ = 2 × 1030Kg,

6

the mass of the Sun and
r = 1.5 × 1011m,

is the distance between Earth and the Sun. The latter defines what we call an
astronomical unit AU.

The Earth-Sun system, Newton’s Laws
From Newton’s second law we have then for the x direction

d2x

dt2 = − Fx

ME
,

and
d2y

dt2 = − Fy

ME
,

for the y direction.
Here we will use that x = r cos (θ), y = r sin (θ) and

r =
√

x2 + y2.

We can rewrite

Fx = −GM⊙ME

r2 cos (θ) = −GM⊙ME

r3 x,

and
Fy = −GM⊙ME

r2 sin (θ) = −GM⊙ME

r3 y,

for the y direction.

The Earth-Sun system, rewriting the Equations
We can rewrite these two equations

Fx = −GM⊙ME

r2 cos (θ) = −GM⊙ME

r3 x,

and
Fy = −GM⊙ME

r2 sin (θ) = −GM⊙ME

r3 y,

as four first-order coupled differential equations

dvx

dt
= −GM⊙

r3 x,

dx

dt
= vx,

dvy

dt
= −GM⊙

r3 y,

dy

dt
= vy.

7

Building a code for the solar system, final coupled equations
The four coupled differential equations

dvx

dt
= −GM⊙

r3 x,

dx

dt
= vx,

dvy

dt
= −GM⊙

r3 y,

dy

dt
= vy,

can be turned into dimensionless equations or we can introduce astronomical
units with 1 AU = 1.5 × 1011.

Using the equations from circular motion (with r = 1AU)

MEv2

r
= F = GM⊙ME

r2 ,

we have
GM⊙ = v2r,

and using that the velocity of Earth (assuming circular motion) is v = 2πr/yr =
2πAU/yr, we have

GM⊙ = v2r = 4π2 (AU)3

yr2 .

Building a code for the solar system, discretized equations
The four coupled differential equations can then be discretized using Euler’s
method as (with step length h)

vx,i+1 = vx,i − h
4π2

r3
i

xi,

xi+1 = xi + hvx,i,

vy,i+1 = vy,i − h
4π2

r3
i

yi,

yi+1 = yi + hvy,i,

8

Code Example with Euler’s Method
The code here implements Euler’s method for the Earth-Sun system using a
more compact way of representing the vectors. Alternatively, you could have
spelled out all the variables vx, vy, x and y as one-dimensional arrays.

Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt
import os

Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

DeltaT = 0.001
#set up arrays
tfinal = 10 # in years
n = ceil(tfinal/DeltaT)
set up arrays for t, a, v, and x
t = np.zeros(n)
v = np.zeros((n,2))
r = np.zeros((n,2))
Initial conditions as compact 2-dimensional arrays
r0 = np.array([1.0,0.0])
v0 = np.array([0.0,2*pi])
r[0] = r0
v[0] = v0
Fourpi2 = 4*pi*pi
Start integrating using Euler's method
for i in range(n-1):

Set up the acceleration
Here you could have defined your own function for this
rabs = sqrt(sum(r[i]*r[i]))
a = -Fourpi2*r[i]/(rabs**3)
update velocity, time and position using Euler's forward method
v[i+1] = v[i] + DeltaT*a
r[i+1] = r[i] + DeltaT*v[i]

9

t[i+1] = t[i] + DeltaT
Plot position as function of time
fig, ax = plt.subplots()
#ax.set_xlim(0, tfinal)
ax.set_ylabel('y[AU]')
ax.set_xlabel('x[AU]')
ax.plot(r[:,0], r[:,1])
fig.tight_layout()
save_fig("EarthSunEuler")
plt.show()

Problems with Euler’s Method
We notice here that Euler’s method doesn’t give a stable orbit. It means that
we cannot trust Euler’s method. In a deeper way, as we will see in homework
5, Euler’s method does not conserve energy. It is an example of an integrator
which is not symplectic.

Here we present thus two methods, which with simple changes allow us to
avoid these pitfalls. The simplest possible extension is the so-called Euler-Cromer
method. The changes we need to make to our code are indeed marginal here.
We need simply to replace

r[i+1] = r[i] + DeltaT*v[i]

in the above code with the velocity at the new time ti+1

r[i+1] = r[i] + DeltaT*v[i+1]

By this simple caveat we get stable orbits. Below we derive the Euler-Cromer
method as well as one of the most utlized algorithms for sovling the above type
of problems, the so-called Velocity-Verlet method.

Deriving the Euler-Cromer Method
Let us repeat Euler’s method. We have a differential equation

y′(ti) = f(ti, yi) (1)

and if we truncate at the first derivative, we have from the Taylor expansion

yi+1 = y(ti) + (∆t)f(ti, yi) + O(∆t2), (2)

which when complemented with ti+1 = ti + ∆t forms the algorithm for the
well-known Euler method. Note that at every step we make an approximation
error of the order of O(∆t2), however the total error is the sum over all steps
N = (b − a)/(∆t) for t ∈ [a, b], yielding thus a global error which goes like
NO(∆t2) ≈ O(∆t).

To make Euler’s method more precise we can obviously decrease ∆t (increase
N), but this can lead to loss of numerical precision. Euler’s method is not

10

https://en.wikipedia.org/wiki/Symplectic_integrator

recommended for precision calculation, although it is handy to use in order to
get a first view on how a solution may look like.

Euler’s method is asymmetric in time, since it uses information about the
derivative at the beginning of the time interval. This means that we evaluate
the position at y1 using the velocity at v0. A simple variation is to determine
xn+1 using the velocity at vn+1, that is (in a slightly more generalized form)

yn+1 = yn + vn+1 + O(∆t2) (3)

and
vn+1 = vn + (∆t)an + O(∆t2). (4)

The acceleration an is a function of an(yn, vn, tn) and needs to be evaluated as
well. This is the Euler-Cromer method.

Exercise: go back to the above code with Euler’s method and add the
Euler-Cromer method.

The Euler-Cromer method conserves energy. If you are interested, the
following article shows why.

Deriving the Velocity-Verlet Method
Let us stay with x (position) and v (velocity) as the quantities we are interested
in.

We have the Taylor expansion for the position given by

xi+1 = xi + (∆t)vi + (∆t)2

2 ai + O((∆t)3).

The corresponding expansion for the velocity is

vi+1 = vi + (∆t)ai + (∆t)2

2 v
(2)
i + O((∆t)3).

Via Newton’s second law we have normally an analytical expression for the
derivative of the velocity, namely

ai = d2x

dt2 |i = dv

dt
|i = F (xi, vi, ti)

m
.

If we add to this the corresponding expansion for the derivative of the velocity

v
(1)
i+1 = ai+1 = ai + (∆t)v(2)

i + O((∆t)2) = ai + (∆t)v(2)
i + O((∆t)2),

and retain only terms up to the second derivative of the velocity since our error
goes as O(h3), we have

(∆t)v(2)
i ≈ ai+1 − ai.

We can then rewrite the Taylor expansion for the velocity as

vi+1 = vi + (∆t)
2 (ai+1 + ai) + O((∆t)3).

11

https://aapt.scitation.org/doi/10.1119/1.2034523

The velocity Verlet method
Our final equations for the position and the velocity become then

xi+1 = xi + (∆t)vi + (∆t)2

2 ai + O((∆t)3),

and
vi+1 = vi + (∆t)

2 (ai+1 + ai) + O((∆t)3).

Note well that the term ai+1 depends on the position at xi+1. This means that
you need to calculate the position at the updated time ti+1 before the computing
the next velocity. Note also that the derivative of the velocity at the time ti used
in the updating of the position can be reused in the calculation of the velocity
update as well.

Adding the Velocity-Verlet Method
We can now easily add the Verlet method to our original code as

DeltaT = 0.01
#set up arrays
tfinal = 10 # in years
n = ceil(tfinal/DeltaT)
set up arrays for t, a, v, and x
t = np.zeros(n)
v = np.zeros((n,2))
r = np.zeros((n,2))
Initial conditions as compact 2-dimensional arrays
r0 = np.array([1.0,0.0])
v0 = np.array([0.0,2*pi])
r[0] = r0
v[0] = v0
Fourpi2 = 4*pi*pi
Start integrating using the Velocity-Verlet method
for i in range(n-1):

Set up forces, air resistance FD, note now that we need the norm of the vecto
Here you could have defined your own function for this
rabs = sqrt(sum(r[i]*r[i]))
a = -Fourpi2*r[i]/(rabs**3)
update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a
rabs = sqrt(sum(r[i+1]*r[i+1]))
anew = -4*(pi**2)*r[i+1]/(rabs**3)
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
t[i+1] = t[i] + DeltaT

Plot position as function of time
fig, ax = plt.subplots()
ax.set_ylabel('y[AU]')
ax.set_xlabel('x[AU]')
ax.plot(r[:,0], r[:,1])
fig.tight_layout()
save_fig("EarthSunVV")
plt.show()

12

You can easily generalize the calculation of the forces by defining a function
which takes in as input the various variables. We leave this as a challenge to
you.

Energy conservation
Here we show how we can set up a code which conserves the total energy. We
need then to compute the kinetic energy and the potential energy. Here we have
defined two simple arrays as functions of time for the kinetic and the potential
energies which we update as soon as we have updated the positions and the
velocities. Note that we are keeping the Sun at rest, meaning that it is only the
Earth which moves.

DeltaT = 0.0001
#set up arrays
tfinal = 10 # in years
n = ceil(tfinal/DeltaT)
set up arrays for t, a, v, and x
t = np.zeros(n)
v = np.zeros((n,2))
r = np.zeros((n,2))
Ekin = np.zeros(n)
Epot = np.zeros(n)
Initial conditions as compact 2-dimensional arrays
r0 = np.array([1.0,0.0])
v0 = np.array([0.0,2.0*pi])
r[0] = r0
v[0] = v0
Fourpi2 = 4*pi*pi
Mass of Earth set to 1 and setting up initial Ekin and Epot
Ekin[0] = 0.5*sum(v[0]*v[0])
Epot[0] = -Fourpi2/sqrt(sum(r[0]*r[0]))
Start integrating using the Velocity-Verlet method
for i in range(n-1):

Set up forces, air resistance FD, note now that we need the norm of the vecto
Here you could have defined your own function for this
rabs = sqrt(sum(r[i]*r[i]))
a = -Fourpi2*r[i]/(rabs**3)
update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a
rabs = sqrt(sum(r[i+1]*r[i+1]))
anew = -4*(pi**2)*r[i+1]/(rabs**3)
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
Ekin[i+1] += 0.5*(sum(v[i+1]*v[i+1]))
Epot[i+1] += -Fourpi2/rabs
t[i+1] = t[i] + DeltaT

Plot energy as function of time
fig, ax = plt.subplots()
ax.set_ylabel('E')
ax.set_xlabel('t[yr]')
ax.plot(t, Epot+Ekin)
fig.tight_layout()
save_fig("EnergyEarthSunVV")
plt.show()

13

Hints for exercises 2 and 3
Taylor exercise 3.11: This exercise is discussed in Taylor’s chapter 3.2.

Consider the rocket of mass M moving with velocity v. After a brief instant,
the velocity of the rocket is v + ∆v and the mass is M − ∆M . Momentum
conservation gives

Mv = (M − ∆M)(v + ∆v) + ∆M(v − ve)
0 = −∆Mv + M∆v + ∆M(v − ve),
0 = M∆v − ∆Mve.

Exercise 2
In the second step we ignored the term ∆M∆v since we can assume it is small.

The last equation gives

∆v = ve

M
∆M, (5)

dv

dt
dt = ve

M
dM.

Here we let ∆v → dv and ∆M → dM . We have also assumed that M(t) =
M0 − kt. Integrating the expression with lower limits v0 = 0 and M0, one finds

v = ve

∫ M

M0

dM ′

M ′

v = ve ln(M/M0)
= ve ln[(M0 − kt)/M0].

We have ignored gravity here. If we add gravity as the external force, we get
when integrating an additional terms −gt, that is

v(t) = ve ln[(M0 − kt)/M0] − gt.

Exercise 3, more rockets
This is a continuation of the previous exercise and most of the relevant background
material can be found in Taylor chapter 3.2.

Taking the velocity from the previous exercise and integrating over time we
find the height

y(t) = y(t0 = 0) +
∫ t

0
v(t′)dt′.

You need to insert v(t) from the previous exercise
To do the integral over time we recall that M(t) = M0 − ∆Mt. We assumed

that ∆M = k is a constant. We use that M0 − M = kt and assume that mass
decreases by a constant k times time t.

14

Some more manipulations which have to be done
We will need to compute an integral which goes like∫ t

0
ln M(t′)dt′ =

∫ t

0
ln (M0 − kt′)dt′.

and defining the variable u = M0 − kt′, with du = −kdt′ and the new limits M0
when t = 0 and M0 − kt when time is equal to t, we have∫ t

0
ln M(t′)dt′ =

∫ t

0
ln (M0 − kt′)dt′ = − 1

k

∫ M0−kt

M0

ln (u)du = − 1
k

[u ln (u) − u]M0−kt
M0

.

15

