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Exercises for Wednesday after lecture part
Example 1. We study a classical electron which moves in the x-direction along
a surface. The force from the surface is

F (x) = −F0 sin (2πx

b
)i.

Show that the force is conservative.

Example 2. Show that the force F (r) = γ r
r3 , isaconservativeforce.Hereγ is

a constant and r =
√

x2 + y2 + z2 and r = xi + yj + zk.

One Figure to Rule All Forces (thx to Julie Butler)
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What is a Conservative Force?
A conservative force is a force whose property is that the total work done in
moving an object between two points is independent of the taken path. This
means that the work on an object under the influence of a conservative force, is
independent on the path of the object. It depends only on the spatial degrees of
freedom and it is possible to assign a numerical value for the potential at any
point. It leads to conservation of energy. The gravitational force is an example
of a conservative force.

Two important conditions
First, a conservative force depends only on the spatial degrees of freedom. This
is a necessary condition for obtaining a path integral which is independent of
path. The important condition for the final work to be independent of the path
is that the curl of the force is zero, that is

∇ × F = 0

The total Momentum
The total momentum P is defined as the sum of the individual momenta, meaning
that we can rewrite

F net
1 + F net

2 = dp1

dt
+ dp2

dt
= dP

dt
,

that is the derivate with respect to time of the total momentum. If we now
write the net forces as sums of the external plus internal forces between the
objects we have

dP

dt
= F ext

1 + F12 + F ext
2 + F21 = F ext

1 + F ext
2 .

The derivative of the total momentum is just the sum of the external
forces. If we assume that the external forces are zero and that only internal (here
two-body forces) are at play, we obtain the important result that the derivative
of the total momentum is zero. This means again that the total momentum is a
constant of the motion and conserved quantity. This is a very important result
that we will use in many applications to come.

Newton’s Second Law
Let us now general to several objects N and let us also assume that there are no
external forces. We will label such a system as an isolated system.

Newton’s second law, F = ma, can be written for a particle i as

Fi =
N∑

j ̸=i

Fij = miai, (1)
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where Fi (a single subscript) denotes the net force acting on i from the other
objects/particles. Because the mass of i is fixed and we assume it does not
change with time, one can see that

Fi = d

dt
mivi =

N∑
j ̸=i

Fij . (2)

Summing over all Objects/Particles
Now, one can sum over all the objects/particles and obtain

d

dt

∑
i

mivi =
N∑

ij,i ̸=j

Fij = 0.

How did we arrive at the last step? We rewrote the double sum as

N∑
ij,i ̸=j

Fij =
N∑
i

∑
j>i

(Fij + Fji) ,

and using Newton’s third law which states that Fij = −Fji, we obtain that
the net sum over all the two-particle forces is zero when we only consider so-called
internal forces. Stated differently, the last step made use of the fact that for
every term ij, there is an equivalent term ji with opposite force. Because the
momentum is defined as mv, for a system of particles, we have thus

d

dt

∑
i

mivi = 0, for isolated particles. (3)

Conservation of total Momentum
By "isolated" one means that the only force acting on any particle i are those
originating from other particles in the sum, i.e. “no external” forces. Thus,
Newton’s third law leads to the conservation of total momentum,

P =
∑

i

mivi,

and we have
d

dt
P = 0.

Conservation of Angular Momentum
The angular momentum is defined as

L = r × p = mr × v. (4)
It means that the angular momentum is perpendicular to the plane defined

by position r and the momentum p via r × p.
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Rate of Change of Angular Momentum
The rate of change of the angular momentum is

dL

dt
= mv × v + mr × v̇ = r × F

The first term is zero because v is parallel to itself, and the second term
defines the so-called torque. If F is parallel to r then the torque is zero and we
say that angular momentum is conserved.

If the force is not radial, r × F ̸= 0 as above, and angular momentum is no
longer conserved,

dL

dt
= r × F ≡ τ , (5)

where τ is the torque.

The Torque, Example 1 (hw 4, exercise 4)
Let us assume we have an initial position r0 = x0e1 + y0e2 at a time t0 = 0. We
add now a force in the positive x-direction

F = Fxe1 = dp

dt
,

where we used the force as defined by the time derivative of the momentum.
We can use this force (and its pertinent acceleration) to find the velocity via

the relation
v(t) = v0 +

∫ t

t0

adt′,

and with v0 = 0 we have

v(t) =
∫ t

t0

F

m
dt′,

where m is the mass of the object.

The Torque, Example 1 (hw 4, exercise 4)
Since the force acts only in the x-direction, we have after integration

v(t) = F

m
t = Fx

m
te1 = vx(t)e1.

The momentum is in turn given by p = pxe1 = mvxe1 = Fxte1.
Integrating over time again we find the final position as (note the force

depends only on the x-direction)

r(t) = (x0 + 1
2

Fx

m
t2)e1 + y0e2.

There is no change in the position in the y-direction since the force acts only in
the x-direction.

5



The Torque, Example 1 (hw 4, exercise 4)
We can now compute the angular momentum given by

l = r × p =
[
(x0 + 1

2
Fx

m
t2)e1 + y0e2

]
× Fxte1.

Computing the cross product we find

l = −y0Fxte3 = −y0Fxtez.

The torque is the time derivative of the angular momentum and we have

τ = −y0Fxe3 = −y0Fxez.

The torque is non-zero and angular momentum is not conserved.

System of Isolated Particles
For a system of isolated particles, one can write

d

dt

∑
i

Li =
∑
i̸=j

ri × Fij (6)

= 1
2

∑
i ̸=j

ri × Fij + rj × Fji

= 1
2

∑
i ̸=j

(ri − rj) × Fij = 0,

where the last step used Newton’s third law, Fij = −Fji. If the forces
between the particles are radial, i.e. Fij || (ri − rj), then each term in the sum
is zero and the net angular momentum is fixed. Otherwise, you could imagine
an isolated system that would start spinning spontaneously.

Work, Energy, Momentum and Conservation laws
Energy conservation is most convenient as a strategy for addressing problems
where time does not appear. For example, a particle goes from position x0 with
speed v0, to position xf ; what is its new speed? However, it can also be applied
to problems where time does appear, such as in solving for the trajectory x(t),
or equivalently t(x).

Energy Conservation
Energy is conserved in the case where the potential energy, V (r), depends only
on position, and not on time. The force is determined by V ,

F (r) = −∇V (r). (7)
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Conservative forces
We say a force is conservative if it satisfies the following conditions:

1. The force F acting on an object only depends on the position r, that is
F = F (r).

2. For any two points r1 and r2, the work done by the force F on the
displacement between these two points is independent of the path taken.

3. Finally, the curl of the force is zero ∇ × F = 0.

Forces and Potentials
The energy E of a given system is defined as the sum of kinetic and potential
energies,

E = K + V (r).

We define the potential energy at a point r as the negative work done from
a starting point r0 to a final point r

V (r) = −W (r0 → r) = −
∫ r

r0

dr′F (r′).

If the potential depends on the path taken between these two points there is no
unique potential.

Example (relevant for homework 5)
We study a classical electron which moves in the x-direction along a surface.
The force from the surface is

F (x) = −F0 sin (2πx

b
)e1.

The constant b represents the distance between atoms at the surface of the
material, F0 is a constant and x is the position of the electron.

This is indeed a conservative force since it depends only on position and its
curl is zero, that is −∇ × F = 0. This means that energy is conserved and the
integral over the work done by the force is independent of the path taken. We
will come back to this in more detail next week.

Example Continues
Using the work-energy theorem we can find the work W done when moving an
electron from a position x0 to a final position x through the integral

W = −
∫ x

x0

F (x′)dx′ =
∫ x

x0

F0 sin (2πx′

b
)dx′,
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which results in
W = F0b

2π

[
cos (2πx

b
) − cos (2πx0

b
)
]

.

Since this is related to the change in kinetic energy we have, with v0 being the
initial velocity at a time t0,

v = ±

√
2
m

F0b

2π

[
cos (2πx

b
) − cos (2πx0

b
)
]

+ v2
0 .

The potential energy from this example
The potential energy, due to energy conservation is

V (x) = V (x0) + 1
2mv2

0 − 1
2mv2,

with v given by the velocity from above.
We can now, in order to find a more explicit expression for the potential

energy at a given value x, define a zero level value for the potential. The potential
is defined, using the work-energy theorem, as

V (x) = V (x0) +
∫ x

x0

(−F (x′))dx′,

and if you recall the definition of the indefinite integral, we can rewrite this
as

V (x) =
∫

(−F (x′))dx′ + C,

where C is an undefined constant. The force is defined as the gradient of the
potential, and in that case the undefined constant vanishes. The constant does
not affect the force we derive from the potential.

We have then
V (x) = V (x0) −

∫ x

x0

F (x′)dx′,

which results in

V (x) = F0b

2π

[
cos (2πx

b
) − cos (2πx0

b
)
]

+ V (x0).

We can now define
F0b

2π
cos (2πx0

b
) = V (x0),

which gives

V (x) = F0b

2π

[
cos (2πx

b
)
]

.
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Force and Potential
We have defined work as the energy resulting from a net force acting on an
object (or sseveral objects), that is

W (r → r + dr) = F (r)dr.

If we write out this for each component we have

W (r → r + dr) = F (r)dr = Fxdx + Fydy + Fzdz.

The work done from an initial position to a final one defines also the difference
in potential energies

W (r → r + dr) = − [V (r + dr) − V (r)] .

Getting to F (r) = −∇V (r)
We can write out the differences in potential energies as

V (r + dr) − V (r) = V (x + dx, y + dy, z + dz) − V (x, y, z) = dV,

and using the expression the differential of a multi-variable function f(x, y, z)

df = ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz,

we can write the expression for the work done as

W (r → r + dr) = −dV = −
[

∂V

∂x
dx + ∂V

∂y
dy + ∂V

∂z
dz

]
.

Final expression
Comparing the last equation with

W (r → r + dr) = Fxdx + Fydy + Fzdz,

we have
Fxdx + Fydy + Fzdz = −

[
∂V

∂x
dx + ∂V

∂y
dy + ∂V

∂z
dz

]
,

leading to
Fx = −∂V

∂x
,

and
Fy = −∂V

∂y
,
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and
Fz = −∂V

∂z
,

or just
F = −∂V

∂x
e1 − ∂V

∂y
e2 − ∂V

∂z
e3 = −∇V (r).

And this connection is the one we wanted to show.

Net Energy
The net energy, E = V + K where K is the kinetic energy, is then conserved,

d

dt
(K + V ) = d

dt

(m

2 (v2
x + v2

y + v2
z) + V (r)

)
(8)

= m

(
vx

dvx

dt
+ vy

dvy

dt
+ vz

dvz

dt

)
+ ∂xV

dx

dt
+ ∂yV

dy

dt
+ ∂zV

dz

dt

= vxFx + vyFy + vzFz − Fxvx − Fyvy − Fzvz = 0.

In Vector Notation
The same proof can be written more compactly with vector notation,

d

dt

(m

2 v2 + V (r)
)

= mv · v̇ + ∇V (r) · ṙ (9)

= v · F − F · v = 0.

Inverting the expression for kinetic energy,

v =
√

2K/m =
√

2(E − V )/m, (10)

allows one to solve for the one-dimensional trajectory x(t), by finding t(x),

t =
∫ x

x0

dx′

v(x′) =
∫ x

x0

dx′√
2(E − V (x′))/m

. (11)

Note this would be much more difficult in higher dimensions, because you
would have to determine which points, x, y, z, the particles might reach in the
trajectory, whereas in one dimension you can typically tell by simply seeing
whether the kinetic energy is positive at every point between the old position
and the new position.
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The Torque, Example 2
One can write the torque about a given axis, which we will denote as ẑ, in polar
coordinates, where

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ, (12)

to find the z component of the torque,

τz = xFy − yFx (13)
= −r sin θ {cos ϕ∂y − sin ϕ∂x} V (x, y, z).

Chain Rule and Partial Derivatives
One can use the chain rule to write the partial derivative w.r.t. ϕ (keeping r
and θ fixed),

∂ϕ = ∂x

∂ϕ
∂x + ∂y

∂ϕ
∂y + ∂z

∂ϕ
∂z (14)

= −r sin θ sin ϕ∂x + sin θ cos ϕ∂y.

Combining the two equations,

τz = −∂ϕV (r, θ, ϕ). (15)

Thus, if the potential is independent of the azimuthal angle ϕ, there is no
torque about the z axis and Lz is conserved.

The Earth-Sun system
We will now venture into a study of a system which is energy conserving. The aim
is to see if we (since it is not possible to solve the general equations analytically)
we can develop stable numerical algorithms whose results we can trust!

We solve the equations of motion numerically. We will also compute quantities
like the energy numerically.

We start with a simpler case first, the Earth-Sun system in two dimensions
only. The gravitational force FG on the earth from the sun is

FG = −GM⊙ME

r3 r,

where G is the gravitational constant,

ME = 6 × 1024Kg,
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the mass of Earth,
M⊙ = 2 × 1030Kg,

the mass of the Sun and
r = 1.5 × 1011m,

is the distance between Earth and the Sun. The latter defines what we call an
astronomical unit AU.

The Earth-Sun system, Newton’s Laws
From Newton’s second law we have then for the x direction

d2x

dt2 = − Fx

ME
,

and
d2y

dt2 = − Fy

ME
,

for the y direction.
Here we will use that x = r cos (θ), y = r sin (θ) and

r =
√

x2 + y2.

We can rewrite

Fx = −GM⊙ME

r2 cos (θ) = −GM⊙ME

r3 x,

and
Fy = −GM⊙ME

r2 sin (θ) = −GM⊙ME

r3 y,

for the y direction.

The Earth-Sun system, rewriting the Equations
We can rewrite these two equations

Fx = −GM⊙ME

r2 cos (θ) = −GM⊙ME

r3 x,

and
Fy = −GM⊙ME

r2 sin (θ) = −GM⊙ME

r3 y,

as four first-order coupled differential equations
dvx

dt
= −GM⊙

r3 x,

dx

dt
= vx,

dvy

dt
= −GM⊙

r3 y,

dy

dt
= vy.
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Our first step towards building a code for the solar system,
final coupled equations
The four coupled differential equations

dvx

dt
= −GM⊙

r3 x,

dx

dt
= vx,

dvy

dt
= −GM⊙

r3 y,

dy

dt
= vy,

can be turned into dimensionless equations or we can introduce astronomical
units with 1 AU = 1.5 × 1011.

Using the equations from circular motion (with r = 1AU)

MEv2

r
= F = GM⊙ME

r2 ,

we have
GM⊙ = v2r,

and using that the velocity of Earth (assuming circular motion) is v = 2πr/yr =
2πAU/yr, we have

GM⊙ = v2r = 4π2 (AU)3

yr2 .

Building a code for the solar system, discretized equations
The four coupled differential equations can then be discretized using Euler’s
method as (with step length h)

vx,i+1 = vx,i − h
4π2

r3
i

xi,

xi+1 = xi + hvx,i,

vy,i+1 = vy,i − h
4π2

r3
i

yi,

yi+1 = yi + hvy,i,
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Code Example with Euler’s Method
The code here implements Euler’s method for the Earth-Sun system using a
more compact way of representing the vectors. Alternatively, you could have
spelled out all the variables vx, vy, x and y as one-dimensional arrays.

# Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt
import os

# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

DeltaT = 0.001
#set up arrays
tfinal = 10 # in years
n = ceil(tfinal/DeltaT)
# set up arrays for t, a, v, and x
t = np.zeros(n)
v = np.zeros((n,2))
r = np.zeros((n,2))
# Initial conditions as compact 2-dimensional arrays
r0 = np.array([1.0,0.0])
v0 = np.array([0.0,2*pi])
r[0] = r0
v[0] = v0
Fourpi2 = 4*pi*pi
# Start integrating using Euler's method
for i in range(n-1):

# Set up the acceleration
# Here you could have defined your own function for this
rabs = sqrt(sum(r[i]*r[i]))
a = -Fourpi2*r[i]/(rabs**3)
# update velocity, time and position using Euler's forward method
v[i+1] = v[i] + DeltaT*a
r[i+1] = r[i] + DeltaT*v[i]
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t[i+1] = t[i] + DeltaT
# Plot position as function of time
fig, ax = plt.subplots()
#ax.set_xlim(0, tfinal)
ax.set_ylabel('y[AU]')
ax.set_xlabel('x[AU]')
ax.plot(r[:,0], r[:,1])
fig.tight_layout()
save_fig("EarthSunEuler")
plt.show()

Problems with Euler’s Method
We notice here that Euler’s method doesn’t give a stable orbit. It means that
we cannot trust Euler’s method. In a deeper way, as we will see in homework
5, Euler’s method does not conserve energy. It is an example of an integrator
which is not symplectic.

Here we present thus two methods, which with simple changes allow us to
avoid these pitfalls. The simplest possible extension is the so-called Euler-Cromer
method. The changes we need to make to our code are indeed marginal here.
We need simply to replace

r[i+1] = r[i] + DeltaT*v[i]

in the above code with the velocity at the new time ti+1

r[i+1] = r[i] + DeltaT*v[i+1]

By this simple caveat we get stable orbits. Below we derive the Euler-Cromer
method as well as one of the most utlized algorithms for sovling the above type
of problems, the so-called Velocity-Verlet method.

Deriving the Euler-Cromer Method
Let us repeat Euler’s method. We have a differential equation

y′(ti) = f(ti, yi) (16)

and if we truncate at the first derivative, we have from the Taylor expansion

yi+1 = y(ti) + (∆t)f(ti, yi) + O(∆t2), (17)

which when complemented with ti+1 = ti + ∆t forms the algorithm for the
well-known Euler method. Note that at every step we make an approximation
error of the order of O(∆t2), however the total error is the sum over all steps
N = (b − a)/(∆t) for t ∈ [a, b], yielding thus a global error which goes like
NO(∆t2) ≈ O(∆t).

To make Euler’s method more precise we can obviously decrease ∆t (increase
N), but this can lead to loss of numerical precision. Euler’s method is not
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recommended for precision calculation, although it is handy to use in order to
get a first view on how a solution may look like.

Euler’s method is asymmetric in time, since it uses information about the
derivative at the beginning of the time interval. This means that we evaluate
the position at y1 using the velocity at v0. A simple variation is to determine
xn+1 using the velocity at vn+1, that is (in a slightly more generalized form)

yn+1 = yn + vn+1 + O(∆t2) (18)

and
vn+1 = vn + (∆t)an + O(∆t2). (19)

The acceleration an is a function of an(yn, vn, tn) and needs to be evaluated as
well. This is the Euler-Cromer method.

Exercise: go back to the above code with Euler’s method and add the
Euler-Cromer method.

Deriving the Velocity-Verlet Method
Let us stay with x (position) and v (velocity) as the quantities we are interested
in.

We have the Taylor expansion for the position given by

xi+1 = xi + (∆t)vi + (∆t)2

2 ai + O((∆t)3).

The corresponding expansion for the velocity is

vi+1 = vi + (∆t)ai + (∆t)2

2 v
(2)
i + O((∆t)3).

Via Newton’s second law we have normally an analytical expression for the
derivative of the velocity, namely

ai = d2x

dt2 |i = dv

dt
|i = F (xi, vi, ti)

m
.

If we add to this the corresponding expansion for the derivative of the velocity

v
(1)
i+1 = ai+1 = ai + (∆t)v(2)

i + O((∆t)2) = ai + (∆t)v(2)
i + O((∆t)2),

and retain only terms up to the second derivative of the velocity since our error
goes as O(h3), we have

(∆t)v(2)
i ≈ ai+1 − ai.

We can then rewrite the Taylor expansion for the velocity as

vi+1 = vi + (∆t)
2 (ai+1 + ai) + O((∆t)3).
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The velocity Verlet method
Our final equations for the position and the velocity become then

xi+1 = xi + (∆t)vi + (∆t)2

2 ai + O((∆t)3),

and
vi+1 = vi + (∆t)

2 (ai+1 + ai) + O((∆t)3).

Note well that the term ai+1 depends on the position at xi+1. This means that
you need to calculate the position at the updated time ti+1 before the computing
the next velocity. Note also that the derivative of the velocity at the time ti used
in the updating of the position can be reused in the calculation of the velocity
update as well.

Adding the Velocity-Verlet Method
We can now easily add the Verlet method to our original code as

DeltaT = 0.01
#set up arrays
tfinal = 10 # in years
n = ceil(tfinal/DeltaT)
# set up arrays for t, a, v, and x
t = np.zeros(n)
v = np.zeros((n,2))
r = np.zeros((n,2))
# Initial conditions as compact 2-dimensional arrays
r0 = np.array([1.0,0.0])
v0 = np.array([0.0,2*pi])
r[0] = r0
v[0] = v0
Fourpi2 = 4*pi*pi
# Start integrating using the Velocity-Verlet method
for i in range(n-1):

# Set up forces, air resistance FD, note now that we need the norm of the vecto
# Here you could have defined your own function for this
rabs = sqrt(sum(r[i]*r[i]))
a = -Fourpi2*r[i]/(rabs**3)
# update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a
rabs = sqrt(sum(r[i+1]*r[i+1]))
anew = -4*(pi**2)*r[i+1]/(rabs**3)
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
t[i+1] = t[i] + DeltaT

# Plot position as function of time
fig, ax = plt.subplots()
ax.set_ylabel('y[AU]')
ax.set_xlabel('x[AU]')
ax.plot(r[:,0], r[:,1])
fig.tight_layout()
save_fig("EarthSunVV")
plt.show()
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You can easily generalize the calculation of the forces by defining a function
which takes in as input the various variables. We leave this as a challenge to
you.

Additional Material: Link between Line Integrals and Con-
servative forces
The concept of line integrals plays an important role in our discussion of energy
conservation, our definition of potentials and conservative forces.

Let us remind ourselves of some the basic elements (most of you may have
seen this in a calculus course under the general topic of vector fields).

We define a path integration C, that is we integrate from a point r1 to a
point r2. Let us assume that the path C is represented by an arc length s. In
three dimension we have the following representation of C

r(s) = x(s)e1 + y(s)e2 + z(s)e3,

then our integral of a function f(x, y, z) along the path C is defined as∫
C

f(x, y, z)ds =
∫ b

a

f (x(s), y(s), z(s)) ds,

where the initial and final points are a and b, respectively.

Exactness and Independence of Path
With the definition of a line integral, we can in tunrn set up the theorem of
independence of integration path.

Let us define f(x, y, z), g(x, y, z) and h(x, y, z) to be functions which are
defined and continuous in a domain D in space. Then a line integral like the
above is said to be independent of path in D, if for every pair of endpoints a
and b in D the value of the integral is the same for all paths C in D starting
from a point a and ending in a point b. The integral depends thus only on the
integration limits and not on the path.

Differential Forms
An expression of the form

fdx + gdy + hdz,

where f , g and h are functions defined in D, is a called a first-order differential
form in three variables. The form is said to be exact if it is the differential

du = ∂u

∂x
dx + ∂u

∂y
dy + ∂u

∂z
dz,

of a differentiable function u(x, y, z) everywhere in D, that is

du = fdx + gdy + hdz.
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It is said to be exact if and only if we can then set

f = ∂u

∂x
,

and
g = ∂u

∂y
,

and
h = ∂u

∂z
,

everywhere in the domain D.

In Vector Language
In vector language the above means that the differential form

fdx + gdy + hdz,

is exact in D if and only if the vector function (it could be a force, or velocity,
acceleration or other vectors we encounter in this course)

F = fe1 + ge2 + he3,

is the gradient of a function u(x, y, z)

v = ∇u = ∂u

∂x
e1 + ∂u

∂y
e2 + ∂u

∂z
e3.

Path Independence Theorem
If this is the case, we can state the path independence theorem which states that
with functions f(x, y, z), g(x, y, z) and h(x, y, z) that fulfill the above exactness
conditions, the line integral ∫

C

(fdx + gdy + hdz) ,

is independent of path in D if and only if the differential form under the integral
sign is exact in D.

This is the path independence theorem.
We will not give a proof of the theorem. You can find this in any vector

analysis chapter in a mathematics textbook.
We note however that the path integral from a point p to a final point q is

given by∫ q

p

(fdx + gdy + hdz) =
∫ q

p

(
∂u

∂x
dx + ∂u

∂y
dy + ∂u

∂z
dz

)
=

∫ q

p

du.

19



Assume now that we have a dependence on a variable s for x, y and z. We
have then∫ q

p

du =
∫ s2

s1

du

ds
ds = u(x(s), y(s), z(s))|s=s2

s=s1
= u(q) − u(p).

This last equation∫ q

p

(fdx + gdy + hdz) = u(q) − u(p),

is the analogue of the usual formula∫ b

a

f(x)dx = F (x)|ba = F (b) − F (a),

with F ′(x) = f(x).

Work-Energy Theorem again
We remember that a the work done by a force F = fe1 + ge2 + he3 on a
displacemnt dr is

W =
∫

C

F dr =
∫

C

(fdx + gdy + hdz).

From the path independence theorem, we know that this has to result in
the difference between the two endpoints only. This is exact if and only if
the force is the force F is the gradient of a scalar function u. We call this
scalar function, which depends only the positions x, y, z for the potential energy
V (x, y, z) = V (r).

We have thus
F (r) ∝ ∇V (r),

and we define this as
F (r) = −∇V (r).

Such a force is called a conservative force. The above expression can be
used to demonstrate energy conservation.

Additional Theorem
Finally we can define the criterion for exactness and independence of path. This
theorem states that if f(x, y, z), g(x, y, z) and h(x, y, z) are continuous functions
with continuous first partial derivatives in the domain D, then the line integral∫

C

(fdx + gdy + hdz) ,

is independent of path in D when
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∂h

∂y
= ∂g

∂z
,

and
∂f

∂z
= ∂h

∂x
,

and
∂g

∂x
= ∂f

∂y
.

This leads to the curl of F being zero

∇ × F = ∇ × (−∇V (r)) = 0!

Summarizing
A conservative force F is a defined as the partial derivative of a scalar potential
which depends only on the position,

F (r) = −∇V (r).

This leads to conservation of energy and a path independent line integral as
long as the curl of the force is zero, that is

∇ × F = ∇ × (−∇V (r)) = 0.
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