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Aims and Overarching Motivation
Monday. We discuss various forces and their pertinent equations of motion

Recommended reading: Taylor 2.1-2.4. Malthe-Sørenssen chapter 6-7 contains
many examples. We will cover in particular a falling object in two dimensions
with linear air resistance relevant for homework 3.

Wednesday. We discuss other force models with examples such as the grav-
itational force and a spring force. See Malthe-Sørenssen chapter 7.3-7.5. We
start our discussion of energy and work, see Taylor 4.1

We discuss also exercise 5 from homework 2.

Friday. We discuss several examples of energy and work. Taylor 4.1-4.3.

Air Resistance in One Dimension
Last week we considered the motion of a falling object with air resistance. Here
we look at both a quadratic in velocity resistance and linear in velocity. But
first we give a qualitative argument about the mathematical expression for the
air resistance we used last Friday.

Air resistance tends to scale as the square of the velocity. This is in contrast
to many problems chosen for textbooks, where it is linear in the velocity. The
choice of a linear dependence is motivated by mathematical simplicity (it keeps
the differential equation linear) rather than by physics. One can see that the
force should be quadratic in velocity by considering the momentum imparted on
the air molecules. If an object sweeps through a volume dV of air in time dt,
the momentum imparted on the air is

dP = ρmdV v, (1)
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where v is the velocity of the object and ρm is the mass density of the air. If
the molecules bounce back as opposed to stop you would double the size of the
term. The opposite value of the momentum is imparted onto the object itself.
Geometrically, the differential volume is

dV = Avdt, (2)

where A is the cross-sectional area and vdt is the distance the object moved
in time dt.

Resulting Acceleration
Plugging this into the expression above,

dP

dt
= −ρmAv2. (3)

This is the force felt by the particle, and is opposite to its direction of motion.
Now, because air doesn’t stop when it hits an object, but flows around the best
it can, the actual force is reduced by a dimensionless factor cW , called the drag
coefficient.

Fdrag = −cW ρmAv2, (4)

and the acceleration is

dv

dt
= −cW ρmA

m
v2. (5)

For a particle with initial velocity v0, one can separate the dt to one side of
the equation, and move everything with vs to the other side. We did this in our
discussion of simple motion and will not repeat it here.

On more general terms, for many systems, e.g. an automobile, there are
multiple sources of resistance. In addition to wind resistance, where the force is
proportional to v2, there are dissipative effects of the tires on the pavement, and
in the axel and drive train. These other forces can have components that scale
proportional to v, and components that are independent of v. Those independent
of v, e.g. the usual f = µKN frictional force you consider in your first Physics
courses, only set in once the object is actually moving. As speeds become higher,
the v2 components begin to dominate relative to the others. For automobiles at
freeway speeds, the v2 terms are largely responsible for the loss of efficiency. To
travel a distance L at fixed speed v, the energy/work required to overcome the
dissipative forces are fL, which for a force of the form f = αvn becomes

W =
∫
dx f = αvnL. (6)

For n = 0 the work is independent of speed, but for the wind resistance, where
n = 2, slowing down is essential if one wishes to reduce fuel consumption. It
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is also important to consider that engines are designed to be most efficient at
a chosen range of power output. Thus, some cars will get better mileage at
higher speeds (They perform better at 50 mph than at 5 mph) despite the
considerations mentioned above.

Going Ballistic, Projectile Motion or a Softer Approach,
Falling Raindrops
As an example of Newton’s Laws we consider projectile motion (or a falling
raindrop or a ball we throw up in the air) with a drag force. Even though air
resistance is largely proportional to the square of the velocity, we will consider
the drag force to be linear to the velocity, F = −mγv, for the purposes of this
exercise.

Such a dependence can be extracted from experimental data for objects
moving at low velocities, see for example Malthe-Sørenssen chapter 5.6.

We will here focus on a two-dimensional problem.

Two-dimensional falling object
The acceleration for a projectile moving upwards, a = F /m, becomes

dvx
dt

= −γvx, (7)

dvy
dt

= −γvy − g,

and γ has dimensions of inverse time.
If you on the other hand have a falling raindrop, how do these equations

change? See for example Figure 2.1 in Taylor. Let us stay with a ball which is
thrown up in the air at t = 0.

Ways of solving these equations
We will go over two different ways to solve this equation. The first by direct
integration, and the second as a differential equation. To do this by direct
integration, one simply multiplies both sides of the equations above by dt,
then divide by the appropriate factors so that the vs are all on one side of
the equation and the dt is on the other. For the x motion one finds an easily
integrable equation,
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dvx
vx

= −γdt, (8)∫ vx

v0x

dvx
vx

= −γ
∫ t

0
dt,

ln
(
vx
v0x

)
= −γt,

vx(t) = v0xe
−γt.

This is very much the result you would have written down by inspection. For
the y-component of the velocity,

dvy
vy + g/γ

= −γdt (9)

ln
(
vy + g/γ

v0y − g/γ

)
= −γtf ,

vfy = − g
γ

+
(
v0y + g

γ

)
e−γt.

Whereas vx starts at some value and decays exponentially to zero, vy decays
exponentially to the terminal velocity, vt = −g/γ.

Solving as differential equations
Although this direct integration is simpler than the method we invoke below,
the method below will come in useful for some slightly more difficult differential
equations in the future. The differential equation for vx is straight-forward
to solve. Because it is first order there is one arbitrary constant, A, and by
inspection the solution is

vx = Ae−γt. (10)

The arbitrary constants for equations of motion are usually determined by
the initial conditions, or more generally boundary conditions. By inspection
A = v0x, the initial x component of the velocity.

Differential Equations, contn
The differential equation for vy is a bit more complicated due to the presence of g.
Differential equations where all the terms are linearly proportional to a function,
in this case vy, or to derivatives of the function, e.g., vy, dvy/dt, d2vy/dt

2 · · · ,
are called linear differential equations. If there are terms proportional to v2, as
would happen if the drag force were proportional to the square of the velocity,
the differential equation is not longer linear. Because this expression has only one
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derivative in v it is a first-order linear differential equation. If a term were added
proportional to d2v/dt2 it would be a second-order differential equation. In this
case we have a term completely independent of v, the gravitational acceleration
g, and the usual strategy is to first rewrite the equation with all the linear terms
on one side of the equal sign,

dvy
dt

+ γvy = −g. (11)

Splitting into two parts
Now, the solution to the equation can be broken into two parts. Because this
is a first-order differential equation we know that there will be one arbitrary
constant. Physically, the arbitrary constant will be determined by setting the
initial velocity, though it could be determined by setting the velocity at any given
time. Like most differential equations, solutions are not “solved”. Instead, one
guesses at a form, then shows the guess is correct. For these types of equations,
one first tries to find a single solution, i.e. one with no arbitrary constants.
This is called the particular solution, yp(t), though it should really be called “a”
particular solution because there are an infinite number of such solutions. One
then finds a solution to the homogenous equation, which is the equation with
zero on the right-hand side,

dvy,h
dt

+ γvy,h = 0. (12)

Homogenous solutions will have arbitrary constants.
The particular solution will solve the same equation as the original general

equation

dvy,p
dt

+ γvy,p = −g. (13)

However, we don’t need find one with arbitrary constants. Hence, it is called
a particular solution.

The sum of the two,

vy = vy,p + vy,h, (14)

is a solution of the total equation because of the linear nature of the differential
equation. One has now found a general solution encompassing all solutions,
because it both satisfies the general equation (like the particular solution), and
has an arbitrary constant that can be adjusted to fit any initial condition (like
the homogeneous solution). If the equations were not linear, that is if there were
terms such as v2

y or vy v̇y, this technique would not work.
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More details
Returning to the example above, the homogenous solution is the same as that
for vx, because there was no gravitational acceleration in that case,

vy,h = Be−γt. (15)

In this case a particular solution is one with constant velocity,

vy,p = −g/γ. (16)

Note that this is the terminal velocity of a particle falling from a great height.
The general solution is thus,

vy = Be−γt − g/γ, (17)

and one can find B from the initial velocity,

v0y = B − g/γ, B = v0y + g/γ. (18)

Plugging in the expression for B gives the y motion given the initial velocity,

vy = (v0y + g/γ)e−γt − g/γ. (19)

It is easy to see that this solution has vy = v0y when t = 0 and vy = −g/γ when
t→∞.

One can also integrate the two equations to find the coordinates x and y as
functions of t,

x =
∫ t

0
dt′ v0x(t′) = v0x

γ

(
1− e−γt

)
, (20)

y =
∫ t

0
dt′ v0y(t′) = −gt

γ
+ v0y + g/γ

γ

(
1− e−γt

)
.

If the question was to find the position at a time t, we would be finished.
However, the more common goal in a projectile equation problem is to find the
range, i.e. the distance x at which y returns to zero. For the case without a drag
force this was much simpler. The solution for the y coordinate would have been
y = v0yt−gt2/2. One would solve for t to make y = 0, which would be t = 2v0y/g,
then plug that value for t into x = v0xt to find x = 2v0xv0y/g = v0 sin(2θ0)/g.
One follows the same steps here, except that the expression for y(t) is more
complicated. Searching for the time where y = 0, and we get

0 = −gt
γ

+ v0y + g/γ

γ

(
1− e−γt

)
. (21)

This cannot be inverted into a simple expression t = · · · . Such expressions
are known as “transcendental equations”, and are not the rare instance, but are
the norm. In the days before computers, one might plot the right-hand side of

6



the above graphically as a function of time, then find the point where it crosses
zero.

Now, the most common way to solve for an equation of the above type would
be to apply Newton’s method numerically. This involves the following algorithm
for finding solutions of some equation F (t) = 0.

1. First guess a value for the time, tguess.

2. Calculate F and its derivative, F (tguess) and F ′(tguess).

3. Unless you guessed perfectly, F 6= 0, and assuming that ∆F ≈ F ′∆t, one
would choose

4. ∆t = −F (tguess)/F ′(tguess).

5. Now repeat step 1, but with tguess → tguess + ∆t.

If the F (t) were perfectly linear in t, one would find t in one step. Instead, one
typically finds a value of t that is closer to the final answer than tguess. One
breaks the loop once one finds F within some acceptable tolerance of zero. A
program to do this will be added shortly.

Motion in a Magnetic Field
Another example of a velocity-dependent force is magnetism,

F = qv ×B, (22)
Fi = q

∑
jk

εijkvjBk.

For a uniform field in the z direction B = Bẑ, the force can only have x and
y components,

Fx = qBvy (23)
Fy = −qBvx.

The differential equations are

v̇x = ωcvy, ωc = qB/m (24)
v̇y = −ωcvx.

One can solve the equations by taking time derivatives of either equation, then
substituting into the other equation,

v̈x = ωcv̇y = −ω2
cvx, (25)
v̈y = −ωcv̇x = −ωcvy.
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The solution to these equations can be seen by inspection,

vx = A sin(ωct+ φ), (26)
vy = A cos(ωct+ φ).

One can integrate the equations to find the positions as a function of time,

x− x0 =
∫ x

x0

dx =
∫ t

0
dtv(t) (27)

= −A
ωc

cos(ωct+ φ),

y − y0 = A

ωc
sin(ωct+ φ).

The trajectory is a circle centered at x0, y0 with amplitude A rotating in the
clockwise direction.

The equations of motion for the z motion are

v̇z = 0, (28)

which leads to
z − z0 = Vzt. (29)

Added onto the circle, the motion is helical.
Note that the kinetic energy,

T = 1
2m(v2

x + v2
y + v2

z) = 1
2m(ω2

cA
2 + V 2

z ), (30)

is constant. This is because the force is perpendicular to the velocity, so that in
any differential time element dt the work done on the particle F ·dr = dtF ·v = 0.

One should think about the implications of a velocity dependent force.
Suppose one had a constant magnetic field in deep space. If a particle came
through with velocity v0, it would undergo cyclotron motion with radius R =
v0/ωc. However, if it were still its motion would remain fixed. Now, suppose
an observer looked at the particle in one reference frame where the particle was
moving, then changed their velocity so that the particle’s velocity appeared to
be zero. The motion would change from circular to fixed. Is this possible?

The solution to the puzzle above relies on understanding relativity. Imagine
that the first observer believes B 6= 0 and that the electric field E = 0. If the
observer then changes reference frames by accelerating to a velocity v, in the
new frame B and E both change. If the observer moved to the frame where
the charge, originally moving with a small velocity v, is now at rest, the new
electric field is indeed v ×B, which then leads to the same acceleration as one
had before. If the velocity is not small compared to the speed of light, additional
γ factors come into play, γ = 1/

√
1− (v/c)2. Relativistic motion will not be

considered in this course.
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Sliding Block tied to a Wall
Another classical case is that of simple harmonic oscillations, here represented
by a block sliding on a horizontal frictionless surface. The block is tied to a wall
with a spring. If the spring is not compressed or stretched too far, the force on
the block at a given position x is

F = −kx.

Back and Forth, Sliding Block with no friction
The negative sign means that the force acts to restore the object to an equilibrium
position. Newton’s equation of motion for this idealized system is then

m
d2x

dt2
= −kx,

or we could rephrase it as

d2x

dt2
= − k

m
x = −ω2

0x,

with the angular frequency ω2
0 = k/m.

We will derive the above force when we start studying harmonic oscilla-
tions.

Final rewrite
With the position x(t) and the velocity v(t) = dx/dt we can reformulate Newton’s
equation in the following way

dx(t)
dt

= v(t),

and
dv(t)
dt

= −ω2
0x(t).

With initial conditions x(t0) = x0 and v(t0) = v0 we can in turn solve the
differential equations.

Analytical Solution
The above differential equation has the advantage that it can be solved analyti-
cally with general solutions on the form

x(t) = A cosω0t+B sinω0t,

and

v(t) = −ω0A sinω0t+ ω0B cosω0t,
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where A and B are constants to be determined from the initial conditions.
This provides in turn an important test for the numerical solution and the

development of a program for more complicated cases which cannot be solved
analytically.

We will discuss the above equations in more detail when we discuss harmonic
oscillations.

Summarizing the various motion problems 1
The examples we have discussed above were included in order to illustrate various
methods (which depend on the specific problem) to find the solutions of the
equations of motion. We have solved the equations of motion in the following
ways:

Solve the differential equations analytically. We did this for example
with the following object in one or two dimensions or the sliding block. Here we
had for example an equation set like

dvx
dt

= −γvx,

and
dvy
dt

= −γvy − g,

and γ has dimension of inverse time.

Summarizing the various motion problems 2
Integrate the equations. We could also in case we can separate the degrees
of freedom integrate. Take for example one of the equations in the previous slide

dvx
dt

= −γvx,

which we can rewrite in terms of a left-hand side which depends only on the
velocity and a right-hand side which depends only on time

dvx
vx

= −γdt.

Integrating we have (since we can separate vx and t)∫ vt

v0

dvx
vx

= −
∫ tf

t0

γdt,

where vf is the velocity at a final time and tf is the final time. In this case we
found, after having integrated the above two sides that

vf (t) = v0 exp−γt.
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Summarizing the various motion problems 3
Solve the differential equations numerically. Finally, using for example
Euler’s method, we can solve the differential equations numerically. If we can
compare our numerical solutions with analytical solutions, we have an extra
check of our numerical approaches.

The example code on the next slide is relevant for homework 3. Here we deal
with a falling object in two dimensions. Except for the derivations above with
an air resistance which is linear in the velocity, homework 3 uses a quadratic
velocity dependence.

Code example using Euler’s methods
Note: this code needs some additional expressions and will not run

# Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt
import os
from pylab import plt, mpl
plt.style.use('seaborn')
mpl.rcParams['font.family'] = 'serif'

#define the gravitational acceleration
g = 9.80655 #m/s^2
# The mass and the drag constant D
D = 0.00245 #mass/length kg/m
m = 0.2 #kg, mass of falling object
DeltaT = 0.001
#set up final time, here just a number we have chosen
tfinal = 1.0
# set up number of points for all variables
n = ceil(tfinal/DeltaT)
# set up arrays for t, a, v, and y and arrays for analytical results
# Note the brute force setting up of arrays for x and y, vx, vy, ax and ay
# For hw3 you should think of using the 2-dim vectors you used in homework 2
t = np.zeros(n)
vy = np.zeros(n)
y = np.zeros(n)
vx = np.zeros(n)
x = np.zeros(n)
# Initial conditions
vx[0] = 10.0 #m/s
vy[0] = 0.0 #m/s
y[0] = 10.0 #m
x[0] = 0.0 #m
# Start integrating using Euler's method
for i in range(n-1):

# expression for acceleration, note the absolute value and division by mass
# ax = You need to set up the expression for force and thereby the acceleration in the x-direction
# ay = You need to set up the expression for force and thereby the acceleration in the y-direction

# update velocity and position
vx[i+1] = vx[i] + DeltaT*ax
x[i+1] = x[i] + DeltaT*vx[i]
vy[i+1] = vy[i] + DeltaT*ay
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y[i+1] = y[i] + DeltaT*vy[i]
# update time to next time step and compute analytical answer
t[i+1] = t[i] + DeltaT

# Here you need to set up the analytical solution for y(t) and x(t)

if ( y[i+1] < 0.0):
break

data = {'t[s]': t,
'Relative error in y': abs((y-yanalytic)/yanalytic),
'vy[m/s]': vy,
'Relative error in x': abs((x-xanalytic)/xanalytic),
'vx[m/s]': vx

}
NewData = pd.DataFrame(data)
display(NewData)
# save to file
NewData.to_csv(outfile, index=False)
#then plot
fig, axs = plt.subplots(4, 1)
axs[0].plot(t, y)
axs[0].set_xlim(0, tfinal)
axs[0].set_ylabel('y')
axs[1].plot(t, vy)
axs[1].set_ylabel('vy[m/s]')
axs[1].set_xlabel('time[s]')
axs[2].plot(t, x)
axs[2].set_xlim(0, tfinal)
axs[2].set_ylabel('x')
axs[3].plot(t, vx)
axs[3].set_ylabel('vx[m/s]')
axs[3].set_xlabel('time[s]')
fig.tight_layout()
plt.show()

Work, Energy, Momentum and Conservation laws
The previous three cases have shown us how to use Newton’s laws of motion to
determine the motion of an object based on the forces acting on it. For two of the
cases there is an underlying assumption that we can find an analytical solution
to a continuous problem. With a continuous problem we mean a problem where
the various variables can take any value within a finite or infinite interval.

Unfortunately, in many cases we cannot find an exact solution to the equations
of motion we get from Newton’s second law. The numerical approach, where we
discretize the continuous problem, allows us however to study a much richer set
of problems. For problems involving Newton’s laws and the various equations
of motion we encounter, solving the equations numerically, is the standard
approach.

It allows us to focus on the underlying forces. Often we end up using the
same numerical algorithm for different problems.

Here we introduce a commonly used technique that allows us to find the
velocity as a function of position without finding the position as a function of
time—an alternate form of Newton’s second law. The method is based on a
simple principle: Instead of solving the equations of motion directly, we integrate
the equations of motion. Such a method is called an integration method.
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This allows us also to introduce the work-energy theorem. This theorem
allows us to find the velocity as a function of position for an object even in cases
when we cannot solve the equations of motion. This introduces us to the concept
of work and kinetic energy, an energy related to the motion of an object.

And finally, we will link the work-energy theorem with the principle of
conservation of energy.

The Work-Energy Theorem
Let us define the kinetic energy K with a given velocity v

K = 1
2mv

2,

where m is the mass of the object we are considering. We assume also that there
is a force F acting on the given object

F = F (r,v, t),

with r the position and t the time. In general we assume the force is a function of
all these variables. Many of the more central forces in Nature however, depende
only on the position. Examples are the gravitational force and the force derived
from the Coulomb potential in electromagnetism.

Rewriting the Kinetic Energy
Let us study the derivative of the kinetic energy with respect to time t. Its
continuous form is

dK

dt
= 1

2m
dv · v
dt

.

Using our results from exercise 3 of homework 1, we can write the derivative
of a vector dot product as

dK

dt
= 1

2m
dv · v
dt

= 1
2m

(
dv

dt
· v + v · dv

dt

)
= m

dv

dt
· v.

We know also that the acceleration is defined as

a = F

m
= dv

dt
.

We can then rewrite the equation for the derivative of the kinetic energy as

dK

dt
= m

dv

dt
v = F

dr

dt
,

where we defined the velocity as the derivative of the position with respect to
time.
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Discretizing
Let us now discretize the above equation by letting the instantenous terms be
replaced by a discrete quantity, that is we let dK → ∆K, dt → ∆t, dr → ∆r
and dv → ∆v.

We have then

∆K
∆t = m

∆v

∆t v = F
∆r

∆t ,

or by multiplying out ∆t we have

∆K = F∆r.

We define this quantity as the work done by the force F during the displace-
ment ∆r. If study the dimensionality of this problem we have mass times length
squared divided by time squared, or just dimension energy.

Difference in kinetic energy
If we now a series of such displacements ∆r i = 0, 1, . . . , n, we have a difference
in kinetic energy at a final position rn and an initial position r0 given by

∆K = 1
2mv

2
n −

1
2mv

2
0 =

n∑
i=0

Fi∆r,

where Fi are the forces acting at every position ri.
The work done by acting with a force on a set of displacements can then be

as expressed as the difference between the initial and final kinetic energies.
This defines the work-energy theorem.

From the discrete version to the continuous version
If we take the limit ∆r → 0, we can rewrite the sum over the various displace-
ments in terms of an integral, that is

∆K = 1
2mv

2
n −

1
2mv

2
0 =

n∑
i=0

Fi∆r →
∫ rn

r0

F (r,v, t)dr.

This integral defines a path integral since it will depend on the given path we
take between the two end points. We will replace the limits with the symbol c in
order to indicate that we take a specific countour in space when the force acts
on the system. That is the work Wn0 between two points rn and r0 is labeled as

Wn0 = 1
2mv

2
n −

1
2mv

2
0 =

∫
c

F (r,v, t)dr.

Note that if the force is perpendicular to the displacement, then the force
does not affect the kinetic energy.

Let us now study some examples of forces and how to find the velocity from
the integration over a given path.
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