
PHY321: Review of Vectors, Math and
first Numerical Examples for simple

Motion Problems

Morten Hjorth-Jensen1,2

1Department of Physics and Astronomy and Facility for Rare Ion Beams (FRIB), Michigan State University, USA
2Department of Physics, University of Oslo, Norway

Jan 20, 2021

Aims and Overarching Motivation
Wednesday. On Wednesday the 20th we will mainly go through the overview
material from week 2, January 11-15. See the learning material fro week 2
at for example https://mhjensen.github.io/Physics321/doc/pub/week2/
html/week2-bs.html.

Friday. We start studying the problem of a falling object and use this to
introduce numerical aspects.

Falling baseball in one dimension
We anticipate the mathematical model to come and assume that we have a
model for the motion of a falling baseball without air resistance. Our system
(the baseball) is at an initial height y0 (which we will specify in the program
below) at the initial time t0 = 0. In our program example here we will plot the
position in steps of ∆t up to a final time tf . The mathematical formula for the
position y(t) as function of time t is

y(t) = y0 −
1
2gt2,

where g = 9.80665 = 0.980655× 101m/s2 is a constant representing the standard
acceleration due to gravity. We have here adopted the conventional standard
value. This does not take into account other effects, such as buoyancy or drag.
Furthermore, we stop when the ball hits the ground, which takes place at

y(t) = 0 = y0 −
1
2gt2,

c© 1999-2021, "Morten Hjorth-Jensen":"http://mhjgit.github.io/info/doc/web/". Released
under CC Attribution-NonCommercial 4.0 license

http://mhjgit.github.io/info/doc/web/
https://mhjensen.github.io/Physics321/doc/pub/week2/html/week2-bs.html
https://mhjensen.github.io/Physics321/doc/pub/week2/html/week2-bs.html

which gives us a final time tf =
√

2y0/g.
As of now we simply assume that we know the formula for the falling object.

Afterwards, we will derive it.

Our Python Encounter
We start with preparing folders for storing our calculations, figures and if needed,
specific data files we use as input or output files.

Common imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os

Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format=’png’)

#in case we have an input file we wish to read in
#infile = open(data_path("MassEval2016.dat"),’r’)

You could also define a function for making our plots. You can obviously
avoid this and simply set up various matplotlib commands every time you need
them. You may however find it convenient to collect all such commands in one
function and simply call this function.

from pylab import plt, mpl
plt.style.use(’seaborn’)
mpl.rcParams[’font.family’] = ’serif’

def MakePlot(x,y, styles, labels, axlabels):
plt.figure(figsize=(10,6))
for i in range(len(x)):

plt.plot(x[i], y[i], styles[i], label = labels[i])
plt.xlabel(axlabels[0])
plt.ylabel(axlabels[1])

plt.legend(loc=0)

2

Thereafter we start setting up the code for the falling object.
%matplotlib inline
import matplotlib.patches as mpatches

g = 9.80655 #m/s^2
y_0 = 10.0 # initial position in meters
DeltaT = 0.1 # time step
final time when y = 0, t = sqrt(2*10/g)
tfinal = np.sqrt(2.0*y_0/g)
#set up arrays
t = np.arange(0,tfinal,DeltaT)
y =y_0 -g*.5*t**2
Then make a nice printout in table form using Pandas
import pandas as pd
from IPython.display import display
data = {’t[s]’: t,

’y[m]’: y
}

RawData = pd.DataFrame(data)
display(RawData)
plt.style.use(’ggplot’)
plt.figure(figsize=(8,8))
plt.scatter(t, y, color = ’b’)
blue_patch = mpatches.Patch(color = ’b’, label = ’Height y as function of time t’)
plt.legend(handles=[blue_patch])
plt.xlabel("t[s]")
plt.ylabel("y[m]")
save_fig("FallingBaseball")
plt.show()

Here we used pandas (see below) to systemize the output of the position as
function of time.

Average quantities
We define now the average velocity as

v(t) = y(t + ∆t)− y(t)
∆t

.

In the code we have set the time step ∆t to a given value. We could define it in
terms of the number of points n as

∆t = tfinal−tinitial

n + 1 .

Since we have discretized the variables, we introduce the counter i and let
y(t) → y(ti) = yi and t → ti with i = 0, 1, . . . , n. This gives us the following
shorthand notations that we will use for the rest of this course. We define

yi = y(ti), i = 0, 1, 2, . . . , n.

This applies to other variables which depend on say time. Examples are the
velocities, accelerations, momenta etc. Furthermore we use the shorthand

yi±1 = y(ti ±∆t), i = 0, 1, 2, . . . , n.

3

Compact equations
We can then rewrite in a more compact form the average velocity as

vi = yi+1 − yi

∆t
.

The velocity is defined as the change in position per unit time. In the limit
∆t→ 0 this defines the instantaneous velocity, which is nothing but the slope of
the position at a time t. We have thus

v(t) = dy

dt
= lim

∆t→0

y(t + ∆t)− y(t)
∆t

.

Similarly, we can define the average acceleration as the change in velocity per
unit time as

ai = vi+1 − vi

∆t
,

resulting in the instantaneous acceleration

a(t) = dv

dt
= lim

∆t→0

v(t + ∆t)− v(t)
∆t

.

A note on notations: When writing for example the velocity as v(t) we
are then referring to the continuous and instantaneous value. A subscript like vi

refers always to the discretized values.

A differential equation
We can rewrite the instantaneous acceleration as

a(t) = dv

dt
= d

dt

dy

dt
= d2y

dt2 .

This forms the starting point for our definition of forces later. It is a famous
second-order differential equation. If the acceleration is constant we can now
recover the formula for the falling ball we started with. The acceleration can
depend on the position and the velocity. To be more formal we should then
write the above differential equation as

d2y

dt2 = a(t, y(t), dy

dt
).

With given initial conditions for y(t0) and v(t0) we can then integrate the
above equation and find the velocities and positions at a given time t.

If we multiply with mass, we have one of the famous expressions for Newton’s
second law,

F (y, v, t) = m
d2y

dt2 = ma(t, y(t), dy

dt
),

where F is the force acting on an object with mass m. We see that it also has
the right dimension, mass times length divided by time squared. We will come
back to this soon.

4

Integrating our equations
Formally we can then, starting with the acceleration (suppose we have measured
it, how could we do that?) compute say the height of a building. To see this we
perform the following integrations from an initial time t0 to a given time t∫ t

t0

dta(t) =
∫ t

t0

dt
dv

dt
= v(t)− v(t0),

or as
v(t) = v(t0) +

∫ t

t0

dta(t).

When we know the velocity as function of time, we can find the position as
function of time starting from the defintion of velocity as the derivative with
respect to time, that is we have∫ t

t0

dtv(t) =
∫ t

t0

dt
dy

dt
= y(t)− y(t0),

or as
y(t) = y(t0) +

∫ t

t0

dtv(t).

These equations define what is called the integration method for finding the
position and the velocity as functions of time. There is no loss of generality if
we extend these equations to more than one spatial dimension.

Constant acceleration case, the velocity
Let us compute the velocity using the constant value for the acceleration given
by −g. We have

v(t) = v(t0) +
∫ t

t0

dta(t) = v(t0) +
∫ t

t0

dt(−g).

Using our initial time as t0 = 0s and setting the initial velocity v(t0) = v0 = 0m/s
we get when integrating

v(t) = −gt.

The more general case is

v(t) = v0 − g(t− t0).

We can then integrate the velocity and obtain the final formula for the position
as function of time through

y(t) = y(t0) +
∫ t

t0

dtv(t) = y0 +
∫ t

t0

dtv(t) = y0 +
∫ t

t0

dt(−gt),

With y0 = 10m and t0 = 0s, we obtain the equation we started with

y(t) = 10− 1
2gt2.

5

Computing the averages
After this mathematical background we are now ready to compute the mean
velocity using our data.

Now we can compute the mean velocity using our data
We define first an array Vaverage
n = np.size(t)
Vaverage = np.zeros(n)
for i in range(1,n-1):

Vaverage[i] = (y[i+1]-y[i])/DeltaT
Now we can compute the mean accelearatio using our data
We define first an array Aaverage
n = np.size(t)
Aaverage = np.zeros(n)
Aaverage[0] = -g
for i in range(1,n-1):

Aaverage[i] = (Vaverage[i+1]-Vaverage[i])/DeltaT
data = {’t[s]’: t,

’y[m]’: y,
’v[m/s]’: Vaverage,
’a[m/s^2]’: Aaverage
}

NewData = pd.DataFrame(data)
display(NewData[0:n-2])

Note that we don’t print the last values!

Including Air Resistance in our model
In our discussions till now of the falling baseball, we have ignored air resistance
and simply assumed that our system is only influenced by the gravitational force.
We will postpone the derivation of air resistance till later, after our discussion of
Newton’s laws and forces.

For our discussions here it suffices to state that the accelerations is now
modified to

a(t) = −g + Dv(t)|v(t)|,
where |v(t)| is the absolute value of the velocity and D is a constant which
pertains to the specific object we are studying. Since we are dealing with motion
in one dimension, we can simplify the above to

a(t) = −g + Dv2(t).

We can rewrite this as a differential equation

a(t) = dv

dt
= d2y

dt2 = −g + Dv2(t).

Using the integral equations discussed above we can integrate twice and obtain
first the velocity as function of time and thereafter the position as function of
time.

For this particular case, we can actually obtain an analytical solution for the
velocity and for the position. Here we will first compute the solutions analytically,
thereafter we will derive Euler’s method for solving these differential equations
numerically.

6

Analytical solutions
For simplicity let us just write v(t) as v. We have

dv

dt
= −g + Dv2(t).

We can solve this using the technique of separation of variables. We isolate
on the left all terms that involve v and on the right all terms that involve time.
We get then

dv

g −Dv2(t) = −dt,

We scale now the equation to the left by introducing a constant vT =
√

g/D.
This constant has dimension length/time. Can you show this?

Next we integrate the left-hand side (lhs) from v0 = 0 m/s to v and the
right-hand side (rhs) from t0 = 0 to t and obtain∫ v

0

dv

g −Dv2(t) = vT

g
arctanh(v

vT
) = −

∫ t

0
dt = −t.

We can reorganize these equations as

vT arctanh(v

vT
) = −gt,

which gives us v as function of time

v(t) = vT tanh−(gt

vT
).

Finding the final height
With the velocity we can then find the height y(t) by integrating yet another
time, that is

y(t) = y(t0) +
∫ t

t0

dtv(t) =
∫ t

0
dt[vT tanh−(gt

vT
)].

This integral is a little bit trickier but we can look it up in a table over known
integrals and we get

y(t) = y(t0)− v2
T

g
log [cosh (gt

vT
)].

Alternatively we could have used the symbolic Python package Sympy (example
will be inserted later).

In most cases however, we need to revert to numerical solutions.

7

Our first attempt at solving differential equations
Here we will try the simplest possible approach to solving the second-order
differential equation

a(t) = d2y

dt2 = −g + Dv2(t).

We rewrite it as two coupled first-order equations (this is a standard approach)

dy

dt
= v(t),

with initial condition y(t0) = y0 and

a(t) = dv

dt
= −g + Dv2(t),

with initial condition v(t0) = v0.
Many of the algorithms for solving differential equations start with simple

Taylor equations. If we now Taylor expand y and v around a value t + ∆t we
have

y(t + ∆t) = y(t) + ∆t
dy

dt
+ ∆t2

2!
d2y

dt2 + O(∆t3),

and
v(t + ∆t) = v(t) + ∆t

dv

dt
+ ∆t2

2!
d2v

dt2 + O(∆t3).

Using the fact that dy/dt = v and dv/dt = a and keeping only terms up to ∆t
we have

y(t + ∆t) = y(t) + ∆tv(t) + O(∆t2),

and
v(t + ∆t) = v(t) + ∆ta(t) + O(∆t2).

Discretizing our equations
Using our discretized versions of the equations with for example yi = y(ti) and
yi±1 = y(ti + ∆t), we can rewrite the above equations as (and truncating at ∆t)

yi+1 = yi + ∆tvi,

and
vi+1 = vi + ∆tai.

These are the famous Euler equations (forward Euler).
To solve these equations numerically we start at a time t0 and simply integrate

up these equations to a final time tf , The step size ∆t is an input parameter in
our code. You can define it directly in the code below as

DeltaT = 0.1

8

With a given final time tfinal we can then find the number of integration points
via the ceil function included in the math package of Python as

#define final time, assuming that initial time is zero
from math import ceil
tfinal = 0.5
n = ceil(tfinal/DeltaT)
print(n)

The ceil function returns the smallest integer not less than the input in say
x = 21.15
print(ceil(x))

which in the case here is 22.
x = 21.75
print(ceil(x))

which also yields 22. The floor function in the math package is used to return
the closest integer value which is less than or equal to the specified expression or
value. Compare the previous result to the usage of floor

from math import floor
x = 21.75
print(floor(x))

Alternatively, we can define ourselves the number of integration(mesh) points.
In this case we could have

n = 10
tinitial = 0.0
tfinal = 0.5
DeltaT = (tfinal-tinitial)/(n)
print(DeltaT)

Since we will set up one-dimensional arrays that contain the values of various
variables like time, position, velocity, acceleration etc, we need to know the value
of n, the number of data points (or integration or mesh points). With n we can
initialize a given array by setting all elelements to zero, as done here

define array a
a = np.zeros(n)
print(a)

Code for implementing Euler’s method
In the code here we implement this simple Eurler scheme choosing a value for
D = 0.0245 m/s.

Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt
import os

9

Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format=’png’)

g = 9.80655 #m/s^2
D = 0.00245 #m/s
DeltaT = 0.1
#set up arrays
tfinal = 0.5
n = ceil(tfinal/DeltaT)
define scaling constant vT
vT = sqrt(g/D)
set up arrays for t, a, v, and y and we can compare our results with analytical ones
t = np.zeros(n)
a = np.zeros(n)
v = np.zeros(n)
y = np.zeros(n)
yanalytic = np.zeros(n)
Initial conditions
v[0] = 0.0 #m/s
y[0] = 10.0 #m
yanalytic[0] = y[0]
Start integrating using Euler’s method
for i in range(n-1):

expression for acceleration
a[i] = -g + D*v[i]*v[i]
update velocity and position
y[i+1] = y[i] + DeltaT*v[i]
v[i+1] = v[i] + DeltaT*a[i]
update time to next time step and compute analytical answer
t[i+1] = t[i] + DeltaT
yanalytic[i+1] = y[0]-(vT*vT/g)*log(cosh(g*t[i+1]/vT))
if (y[i+1] < 0.0):

break
a[n-1] = -g + D*v[n-1]*v[n-1]
data = {’t[s]’: t,

’y[m]’: y-yanalytic,
’v[m/s]’: v,
’a[m/s^2]’: a
}

NewData = pd.DataFrame(data)

10

display(NewData)
#finally we plot the data
fig, axs = plt.subplots(3, 1)
axs[0].plot(t, y, t, yanalytic)
axs[0].set_xlim(0, tfinal)
axs[0].set_ylabel(’y and exact’)
axs[1].plot(t, v)
axs[1].set_ylabel(’v[m/s]’)
axs[2].plot(t, a)
axs[2].set_xlabel(’time[s]’)
axs[2].set_ylabel(’a[m/s^2]’)
fig.tight_layout()
save_fig("EulerIntegration")
plt.show()

Try different values for ∆t and study the difference between the exact solution
and the numerical solution.

Simple extension, the Euler-Cromer method
The Euler-Cromer method is a simple variant of the standard Euler method.
We use the newly updated velocity vi+1 as an input to the new position, that is,
instead of

yi+1 = yi + ∆tvi,

and
vi+1 = vi + ∆tai,

we use now the newly calculate for vi+1 as input to yi+1, that is we compute
first

vi+1 = vi + ∆tai,

and then
yi+1 = yi + ∆tvi+1,

Implementing the Euler-Cromer method yields a simple change to the previous
code. We only need to change the following line in the loop over time steps

for i in range(n-1):
more codes in between here
v[i+1] = v[i] + DeltaT*a[i]
y[i+1] = y[i] + DeltaT*v[i+1]
more code

11

