
PHY321: Introduction to Classical
Mechanics and plans for Spring 2021

Morten Hjorth-Jensen1,2

Scott Pratt1

1Department of Physics and Astronomy and Facility for Rare Ion Beams (FRIB), Michigan State University, USA
2Department of Physics, University of Oslo, Norway

Jan 20, 2021

Aims and Overview
The first week starts on Monday January 11. This week is dedicated to a review
of learning material and reminder on programming aspects, useful tools, where
to find information and much more. There are no lectures during this week and
the material here on vectors and Python programming will also be discussed
during the week which begins with January 18. Feel free to look at the notes
here before our first lecture on the 20th.

• Introduction to the course and reminder on vectors, space, time and motion.

• Python programming reminder, elements from CMSE 201 INTRODUC-
TION TO COMPUTATIONAL MODELING and how they are used in
this course. Installing software (anaconda). .

• Introduction to Git and GitHub. Overview video on Git and GitHub.

Recommended reading: John R. Taylor, Classical Mechanics (Univ. Sci.
Books 2005), https://www.uscibooks.com/taylor2.htm, see also https://
github.com/mhjensen/Physics321/tree/master/doc/Literature. Chapters
1.2 and 1.3 of Taylor.

Introduction to the course and where to find material
Overview video

c© 1999-2021, "Morten Hjorth-Jensen":"http://mhjgit.github.io/info/doc/web/". Released
under CC Attribution-NonCommercial 4.0 license

http://mhjgit.github.io/info/doc/web/
https://cmse.msu.edu/academics/undergraduate-program/undergraduate-courses/cmse-201-introduction-to-computational-modeling/
https://cmse.msu.edu/academics/undergraduate-program/undergraduate-courses/cmse-201-introduction-to-computational-modeling/
https://mediaspace.msu.edu/media/t/1_8mgx3cyf
https://www.uscibooks.com/taylor2.htm
https://github.com/mhjensen/Physics321/tree/master/doc/Literature
https://github.com/mhjensen/Physics321/tree/master/doc/Literature
https://mediaspace.msu.edu/media/t/1_zzl90pfu

Classical mechanics
Classical mechanics is a topic which has been taught intensively over several
centuries. It is, with its many variants and ways of presenting the educational
material, normally the first real physics course many of us meet and it lays
the foundation for further physics studies. Many of the equations and ways of
reasoning about the underlying laws of motion and pertinent forces, shape our
approaches and understanding of the scientific method and discourse, as well
as the way we develop our insights and deeper understanding about physical
systems.

From Continuous to Discretized Approaches
There is a wealth of well-tested (from both a physics point of view and a
pedagogical standpoint) exercises and problems which can be solved analytically.
However, many of these problems represent idealized and less realistic situations.
The large majority of these problems are solved by paper and pencil and are
traditionally aimed at what we normally refer to as continuous models from
which we may find an analytical solution. As a consequence, when teaching
mechanics, it implies that we can seldomly venture beyond an idealized case in
order to develop our understandings and insights about the underlying forces
and laws of motion.

We aim at changing this here by introducing throughout the course what
we will call a computational path, where with computations we mean solving
scientific problems with all possible tools and means, from plain paper an pencil
exercises, via symbolic calculations to writing a code and running a program
to solve a specific problem. Mathematically this normally means that we move
from a continuous problem to a discretized one. This appproach enables us to
solve a much broader class of problems. In mechanics this means, since we often
rephrase the physical problems in terms of differential equations, that we can in
most settings reuse the same program with some minimal changes.

Space, Time, Motion, Reference Frames and Reminder on
vectors and other mathematical quantities
Our studies will start with the motion of different types of objects such as a
falling ball, a runner, a bicycle etc etc. It means that an object’s position in
space varies with time. In order to study such systems we need to define

• choice of origin

• choice of the direction of the axes

• choice of positive direction (left-handed or right-handed system of reference)

• choice of units and dimensions

These choices lead to some important questions such as

2

• is the physics of a system independent of the origin of the axes?

• is the physics independent of the directions of the axes, that is are there
privileged axes?

• is the physics independent of the orientation of system?

• is the physics independent of the scale of the length?

Dimension, units and labels
Throughout this course we will use the standardized SI units. The standard unit
for length is thus one meter 1m, for mass one kilogram 1kg, for time one second
1s, for force one Newton 1kgm/s2 and for energy 1 Joule 1kgm2s−2.

We will use the following notations for various variables (vectors are always
boldfaced in these lecture notes):

• position r, in one dimention we will normally just use x,

• mass m,

• time t,

• velocity v or just v in one dimension,

• acceleration a or just a in one dimension,

• momentum p or just p in one dimension,

• kinetic energy K,

• potential energy V and

• frequency ω.

More variables will be defined as we need them.

Dimensions and Units
It is also important to keep track of dimensionalities. Don’t mix this up with a
chosen unit for a given variable. We mark the dimensionality in these lectures
as [a], where a is the quantity we are interested in. Thus

• [r] = length

• [m] = mass

• [K] = energy

• [t] = time

3

• [v] = length over time

• [a] = length over time squared

• [p] = mass times length over time

• [ω] = 1/time

Scalars, Vectors and Matrices
A scalar is something with a value that is independent of coordinate system.
Examples are mass, or the relative time between events. A vector has magnitude
and direction. Under rotation, the magnitude stays the same but the direction
changes. Scalars have no spatial index, whereas a three-dimensional vector has
3 indices, e.g. the position r has components r1, r2, r3, which are often referred
to as x, y, z.

There are several categories of changes of coordinate system. The observer
can translate the origin, might move with a different velocity, or might rotate
her/his coordinate axes. For instance, a particle’s position vector changes when
the origin is translated, but its velocity does not. When you study relativity you
will find that quantities you thought of as scalars, such as time or an electric
potential, are actually parts of four-dimensional vectors and that changes of the
velocity of the reference frame act in a similar way to rotations.

In addition to vectors and scalars, there are matrices, which have two indices.
One also has objects with 3 or four indices. These are called tensors of rank n,
where n is the number of indices. A matrix is a rank-two tensor. The Levi-Civita
symbol, εijk used for cross products of vectors, is a tensor of rank three.

Definitions of Vectors
In these lectures we will use boldfaced lower-case letters to label a vector. A
vector a in three dimensions is thus defined as

a = (ax, ay, az),

and using the unit vectors (see below) in a cartesian system we have

a = axe1 + aye2 + aze3,

where the unit vectors have magnitude |ei| = 1 with i = 1 = x, i = 2 = y
and i = 3 = z. Some authors use letters i = e1, j = e2 and k = e3.

Other ways to define a Vector
Alternatively, you may also encounter the above vector as

a = a1e1 + a2e2 + a3e3.

4

Here we have used that a1 = ax, a2 = ay and a3 = az. Such a notation
is sometimes more convenient if we wish to represent vector operations in a
mathematically more compact way, see below here. We may also find this
useful if we want the different components to represent other coordinate systems
that the Cartesian one. A typical example would be going from a Cartesian
representation to a spherical basis. We will encounter such cases many times in
this course.

We use lower-case letters for vectors and upper-case letters for matrices.
Vectors and matrices are always boldfaced.

Polar Coordinates
As an example, consider a two-dimensional Cartesian system with a vector
r = (x, y). Our vector is then written as

r = xe1 + ye2.

Transforming to polar coordinates with the radius ρ ∈ [0,∞) and the angle
φ ∈ [0, 2π] we have the familiar transformations

x = ρ cosφ y = ρ sinφ,
and the inverse relations

ρ =
√
x2 + y2 φ = arctan(y

x
).

We can rewrite the vector a in terms of ρ and φ as

a = ρ cosφe1 + ρ sinφe2,

and we define the new unit vectors as e′1 = cosφe1 and e′2 = sinφe2, we have

a′ = ρe′1 + ρe′2.

Below we will show that the norms of this vector in a Cartesian basis and a
Polar basis are equal.

Unit Vectors
Also known as basis vectors, unit vectors point in the direction of the coordinate
axes, have unit norm, and are orthogonal to one another. Sometimes this is
referred to as an orthonormal basis,

ei · ej = δij =

1 0 0
0 1 0
0 0 1

 . (1)

Here, δij is unity when i = j and is zero otherwise. This is called the unit
matrix, because you can multiply it with any other matrix and not change the
matrix. The dot denotes the dot product, a·b = a1b1+a2b2+a3b3 = |a||b| cos θab.
Sometimes the unit vectors are called x̂, ŷ and ẑ.

5

Our definition of unit vectors
Vectors can be decomposed in terms of unit vectors,

r = r1ê1 + r2ê2 + r3ê3. (2)

The vector components r1, r2 and r3 might be called x, y and z for a
displacement. Another way to write this is to define the vector r = (x, y, z).

Similarly, for the velocity we will use in this course the components v =
(vx, vy, vz. The accelaration is then given by a = (ax, ay, az).

More definitions, repeated indices
As mentioned above, repeated indices infer sums. This means that when you
encounter an expression like the one on the left-hand side here, it stands actually
for a sum (right-hand side)

xiyi =
∑

i

xiyi = x · y.

We will in our lectures seldom use this notation and rather spell out the
summations. This inferred summation over indices is normally called Einstein
summation convention.

Vector Operations, Scalar Product (or dot product)
For two vectors a and b we have

a · b =
∑

i

aibi = |a||b| cos θab,

|a| ≡
√
a · a,

or with a norm-2 notation

|a| ≡ ||a||2 =
√∑

i

a2
i .

Not of all of you are familiar with linear algebra. Numerically we will always
deal with arrays and the dot product vector is given by the product of the
transposed vector multiplied with the other vector, that is we have

aT b =
∑

i

aibi = |a||b| cos θab.

The superscript T represents the transposition operations.

6

https://en.wikipedia.org/wiki/Einstein_notation
https://en.wikipedia.org/wiki/Einstein_notation

Digression, Linear Algebra Notation for Vectors
As an example, consider a three-dimensional velocity defined by a vector v =
(vx, vy, vz). For those of you familiar with linear algebra, we would write this
quantity as

v =

vx

vy

vz

 ,
and the transpose as

vT =
[
vx vy vz

]
.

The norm is
vTv = v2

x + v2
y + v2

z ,

as it should.
Since we will use Python as a programming language throughout this course,

the above vector, using the package numpy (see discussions below), can be
written as

import numpy as np
Define the values of vx, vy and vz
vx = 0.0
vy = 1.0
vz = 0.0
v = np.array([vx, vy, vz])
print(v)
The print the transpose of v
print(v.T)

Try to figure out how to calculate the norm with numpy. We will come back to
numpy in the examples below.

Norm of a transformed Vector
As an example, consider our transformation of a two-dimensional Cartesian
vector r to polar coordinates. We had

r = xe1 + ye2.

Transforming to polar coordinates with the radius ρ ∈ [0,∞) and the angle
φ ∈ [0, 2π] we have

x = ρ cosφ y = ρ sinφ.
We can write this

r =
[
x
y

]
=
[
ρ cosφ
ρ sinφ

]
.

The norm in Cartesian coordinates is r · r = x2 + y2 and using Polar
coordinates we have ρ2(cosφ)2 + ρ2(cosφ)2 = ρ2, which shows that the norm is
conserved since we have ρ =

√
x2 + y2. A transformation to a new basis should

not change the norm.

7

Vector Product (or cross product) of vectors a and b

c = a× b,

ci = εijkajbk.

Here ε is the third-rank anti-symmetric tensor, also known as the Levi-Civita
symbol. It is ±1 only if all three indices are different, and is zero otherwise. The
choice of ±1 depends on whether the indices are an even or odd permutation of
the original symbols. The permutation xyz or 123 is considered to be +1. Its
elements are

εijk = −εikj = −εjik = −εkji (3)
ε123 = ε231 = ε312 = 1,
ε213 = ε132 = ε321 = −1,
εiij = εiji = εjii = 0.

More on cross-products
You may have met cross-products when studying magnetic fields. Because the
matrix is anti-symmetric, switching the x and y axes (or any two axes) flips the
sign. If the coordinate system is right-handed, meaning the xyz axes satisfy
x̂× ŷ = ẑ, where you can point along the x axis with your extended right index
finger, the y axis with your contracted middle finger and the z axis with your
extended thumb. Switching to a left-handed system flips the sign of the vector
c = a× b.

Note that a× b = −b× a. The vector c is perpendicular to both a and b
and the magnitude of c is given by

|c| = |a||b| sin θab.

Pseudo-vectors
Vectors obtained by the cross product of two real vectors are called pseudo-vectors
because the assignment of their direction can be arbitrarily flipped by defining
the Levi-Civita symbol to be based on left-handed rules. Examples are the
magnetic field and angular momentum. If the direction of a real vector prefers
the right-handed over the left-handed direction, that constitutes a violation of
parity. For instance, one can polarize the spins (angular momentum) of nuclei
with a magnetic field so that the spins preferentially point along the direction of
the magnetic field. This does not violate parity because both are pseudo-vectors.
Now assume these polarized nuclei decay and that electrons are one of the
products. If these electrons prefer to exit the decay parallel vs. antiparallel to the
polarizing magnetic field, this constitutes parity violation because the direction
of the outgoing electron momenta are a real vector. This is precisely what is
observed in weak decays.

8

Differentiation of a vector with respect to a scalar
For example, the acceleration a is given by the change in velocity per unit time,
a = dv/dt with components

ai = (dv/dt)i = dvi

dt
.

Here i = x, y, z or i = 1, 2, 3 if we are in three dimensions.

Gradient operator ∇
This represents the derivatives ∂/∂x, ∂/∂y and ∂/∂z. An often used shorthand
is ∂x = ∂/∂x.

The gradient of a scalar function of position and time Φ(x, y, z) = Φ(r, t) is
given by

∇ Φ,

with components i

(∇Φ(x, y, z, t))i = ∂/∂riΦ(r, t) = ∂iΦ(r, t).

Note that the gradient is a vector.
Taking the dot product of the gradient with a vector, normally called the

divergence, we have
diva,∇ · a =

∑
i

∂iai.

Note that the divergence is a scalar.

The curl
The curl of a vector is defined as ∇× a,

curl a,

with components
(∇× a)i = εijk∂jak(r, t).

The Laplacian
The Laplacian is referred to as ∇2 and is defined as

∇2 = ∇ ·∇ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

Question: is the Laplacian a scalar or a vector?

9

Some identities
Here we simply state these, but you may wish to prove a few. They are useful
for this class and will be essential when you study electromagnetism.

a · (b× c) = b · (c× a) = c · (a× b) (4)
a× (b× c) = (a · c)b− (a · b)c

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)

More useful relations
Using the fact that multiplication of reals is distributive we can show that

a(b + c) = ab + ac,

Similarly we can also show that (using product rule for differentiating reals)

d

dt
(ab) = a

db

dt
+ b

da

dt
.

We can repeat these operations for the cross products and show that they
are distribuitive

a× (b + c) = a× b + a× c.

We have also that
d

dt
(a× b) = a× db

dt
+ b× da

dt
.

Gauss’s Theorem
For an integral over a volume V confined by a surface S, Gauss’s theorem gives∫

V

dv ∇ ·A =
∫

S

dS ·A.

For a closed path C which carves out some area S,∫
C

d` ·A =
∫

S

ds · (∇×A)

and Stokes’s Theorem
Stoke’s law can be understood by considering a small rectangle, −∆x < x < ∆x,
−∆y < y < ∆y. The path integral around the edges is

10

∫
C

d` ·A = 2∆y[Ay(∆x, 0)−Ay(−∆x, 0)]− 2∆x[Ax(0,∆y)−Ax(0,−∆y)](5)

= 4∆x∆y
{
Ay(∆x, 0)−Ay(−∆x, 0)

2∆x − Ax(0,∆y)−Ax(0,−∆y)
2∆y

}
= 4∆x∆y

{
∂Ay

∂x
− ∂Ax

∂y

}
= ∆S · ∇ ×A. (6)

Here ∆S is the area of the surface element.

Basic Matrix Features
Note: The material on matrices is optional and will not be used much (except
for illustrations at the very end on garmonic oscillations) since most of you have
not yet taken a course on linear algebra. The material is however included here
for the sake of completeness.

A =

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 I =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Inverse of a Matrix
The inverse of a matrix is defined by

A−1 ·A = I

Relations Name matrix elements
A = AT symmetric aij = aji

A =
(
AT
)−1 real orthogonal

∑
k aikajk =

∑
k akiakj = δij

A = A∗ real matrix aij = a∗ij
A = A† hermitian aij = a∗ji

A =
(
A†
)−1 unitary

∑
k aika

∗
jk =

∑
k a
∗
kiakj = δij

Some famous Matrices
• Diagonal if aij = 0 for i 6= j

• Upper triangular if aij = 0 for i > j

• Lower triangular if aij = 0 for i < j

• Upper Hessenberg if aij = 0 for i > j + 1

11

• Lower Hessenberg if aij = 0 for i < j + 1

• Tridiagonal if aij = 0 for |i− j| > 1

• Lower banded with bandwidth p: aij = 0 for i > j + p

• Upper banded with bandwidth p: aij = 0 for i < j + p

• Banded, block upper triangular, block lower triangular....

More Basic Matrix Features
Some Equivalent Statements. For an N ×N matrix A the following prop-
erties are all equivalent

• If the inverse of A exists, A is nonsingular.

• The equation Ax = 0 implies x = 0.

• The rows of A form a basis of RN .

• The columns of A form a basis of RN .

• A is a product of elementary matrices.

• 0 is not eigenvalue of A.

Rotations
Here, we use rotations as an example of matrices and their operations. One
can consider a different orthonormal basis ê′1, ê′2 and ê′3. The same vector r
mentioned above can also be expressed in the new basis,

r = r′1ê
′
1 + r′2ê

′
2 + r′3ê

′
3. (7)

Even though it is the same vector, the components have changed. Each new
unit vector ê′i can be expressed as a linear sum of the previous vectors,

ê′i =
∑

j

Uij êj , (8)

and the matrix U can be found by taking the dot product of both sides with
êk,

êk · ê′i =
∑

j

Uij êk · êj

êk · ê′i =
∑

j

Uijδjk = Uik. (9)

12

More on the matrix U

Thus, the matrix lambda has components Uij that are equal to the cosine of the
angle between new unit vector ê′i and the old unit vector êj .

U =

ê′1 · ê1 ê′1 · ê2 ê′1 · ê3
ê′2 · ê1 ê′2 · ê2 ê′2 · ê3
ê′3 · ê1 ê′3 · ê2 ê′3 · ê3

 , Uij = ê′i · êj = cos θij . (10)

Properties of the matrix U

Note that the matrix is not symmetric, Uij 6= Uji. One can also look at the
inverse transformation, by switching the primed and unprimed coordinates,

êi =
∑

j

U−1
ij ê′j , (11)

U−1
ij = êi · ê′j = Uji.

The definition of transpose of a matrix, M t
ij = Mji, allows one to state this

as

U−1 = U t. (12)

Tensors
A tensor obeying Eq. (12) defines what is known as a unitary, or orthogonal,
transformation.

The matrix U can be used to transform any vector to the new basis. Consider
a vector

r = r1ê1 + r2ê2 + r3ê3 (13)
= r′1ê

′
1 + r′2ê

′
2 + r′3ê

′
3.

This is the same vector expressed as a sum over two different sets of basis
vectors. The coefficients ri and r′i represent components of the same vector. The
relation between them can be found by taking the dot product of each side with
one of the unit vectors, êi, which gives

ri =
∑

j

êi · ê′j r′j . (14)

Using Eq. (11) one can see that the transformation of r can be also written
in terms of U ,

13

ri =
∑

j

U−1
ij r′j . (15)

Thus, the matrix that transforms the coordinates of the unit vectors, Eq.
(11) is the same one that transforms the coordinates of a vector, Eq. (15).

Rotation matrix
As a small exercise, find the rotation matrix U for finding the components in
the primed coordinate system given from those in the unprimed system, given
that the unit vectors in the new system are found by rotating the coordinate
system by and angle φ about the z axis.

In this case

ê′1 = cosφê1 − sinφê2,

ê′2 = sinφê1 + cosφê2,

ê′3 = ê3.

By inspecting Eq. (9), we get

U =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 .

Unitary Transformations
Under a unitary transformation U (or basis transformation) scalars are un-
changed, whereas vectors r and matrices M change as

r′i = Uij rj , (sum inferred) (16)
M ′ij = UikMkmU

−1
mj .

Physical quantities with no spatial indices are scalars (or pseudoscalars if they
depend on right-handed vs. left-handed coordinate systems), and are unchanged
by unitary transformations. This includes quantities like the trace of a matrix,
the matrix itself had indices but none remain after performing the trace.

TrM ≡ Mii. (17)

Because there are no remaining indices, one expects it to be a scalar. Indeed
one can see this,

14

TrM ′ = UijMjmU
−1
mi (18)

= MjmU
−1
miUij

= Mjmδmj

= Mjj = TrM.

A similar example is the determinant of a matrix, which is also a scalar.

Numerical Elements
Numerical algorithms call for approximate discrete models and much of the
development of methods for continuous models are nowadays being replaced
by methods for discrete models in science and industry, simply because much
larger classes of problems can be addressed with discrete models, often
by simpler and more generic methodologies.

As we will see throughout this course, when properly scaling the equations at
hand, discrete models open up for more advanced abstractions and the possibility
to study real life systems, with the added bonus that we can explore and deepen
our basic understanding of various physical systems

Analytical solutions are as important as before. In addition, such solutions
provide us with invaluable benchmarks and tests for our discrete models. Such
benchmarks, as we will see below, allow us to discuss possible sources of errors
and their behaviors. And finally, since most of our models are based on various
algorithms from numerical mathematics, we have a unique oppotunity to gain a
deeper understanding of the mathematical approaches we are using.

With computing and data science as important elements in essentially all
aspects of a modern society, we could then try to define Computing as solving
scientific problems using all possible tools, including symbolic com-
puting, computers and numerical algorithms, and analytical paper
and pencil solutions. Computing provides us with the tools to develope our
own understanding of the scientific method by enhancing algorithmic thinking.

Computations and the Scientific Method
The way we will teach this course reflects this definition of computing. The
course contains both classical paper and pencil exercises as well as computational
projects and exercises. The hope is that this will allow you to explore the physics
of systems governed by the degrees of freedom of classical mechanics at a deeper
level, and that these insights about the scientific method will help you to develop
a better understanding of how the underlying forces and equations of motion
and how they impact a given system.

Furthermore, by introducing various numerical methods via computational
projects and exercises, we aim at developing your competences and skills about
these topics.

15

Computational Competences
These competences will enable you to

• understand how algorithms are used to solve mathematical problems,

• derive, verify, and implement algorithms,

• understand what can go wrong with algorithms,

• use these algorithms to construct reproducible scientific outcomes and to
engage in science in ethical ways, and

• think algorithmically for the purposes of gaining deeper insights about
scientific problems.

All these elements are central for maturing and gaining a better understanding
of the modern scientific process per se.

The power of the scientific method lies in identifying a given problem as
a special case of an abstract class of problems, identifying general solution
methods for this class of problems, and applying a general method to the specific
problem (applying means, in the case of computing, calculations by pen and
paper, symbolic computing, or numerical computing by ready-made and/or
self-written software). This generic view on problems and methods is particularly
important for understanding how to apply available, generic software to solve a
particular problem.

However, verification of algorithms and understanding their limitations re-
quires much of the classical knowledge about continuous models.

A well-known example to illustrate many of the above con-
cepts
Before we venture into a reminder on Python and mechanics relevant applications,
let us briefly outline some of the abovementioned topics using an example many
of you may have seen before in for example CMSE201. A simple algorithm
for integration is the Trapezoidal rule. Integration of a function f(x) by the
Trapezoidal Rule is given by following algorithm for an interval x ∈ [a, b]∫ b

a

(f(x)dx = 1
2 [f(a) + 2f(a+ h) + · · ·+ 2f(b− h) + f(b)] +O(h2),

where h is the so-called stepsize defined by the number of integration points N as
h = (b− a)/(n). Python offers an extremely versatile programming environment,
allowing for the inclusion of analytical studies in a numerical program. Here
we show an example code with the trapezoidal rule. We use also SymPy to
evaluate the exact value of the integral and compute the absolute error with
respect to the numerically evaluated one of the integral

∫ 1
0 dxx

2 = 1/3. The
following code for the trapezoidal rule allows you to plot the relative error by
comparing with the exact result. By increasing to 108 points one arrives at a
region where numerical errors start to accumulate.

16

from math import log10
import numpy as np
from sympy import Symbol, integrate
import matplotlib.pyplot as plt
function for the trapezoidal rule
def Trapez(a,b,f,n):

h = (b-a)/float(n)
s = 0
x = a
for i in range(1,n,1):

x = x+h
s = s+ f(x)

s = 0.5*(f(a)+f(b)) +s
return h*s

function to compute pi
def function(x):

return x*x
define integration limits
a = 0.0; b = 1.0;
find result from sympy
define x as a symbol to be used by sympy
x = Symbol(’x’)
exact = integrate(function(x), (x, a, b))
set up the arrays for plotting the relative error
n = np.zeros(9); y = np.zeros(9);
find the relative error as function of integration points
for i in range(1, 8, 1):

npts = 10**i
result = Trapez(a,b,function,npts)
RelativeError = abs((exact-result)/exact)
n[i] = log10(npts); y[i] = log10(RelativeError);

plt.plot(n,y, ’ro’)
plt.xlabel(’n’)
plt.ylabel(’Relative error’)
plt.show()

Analyzing the above example
This example shows the potential of combining numerical algorithms with
symbolic calculations, allowing us to

• Validate and verify their algorithms.

• Including concepts like unit testing, one has the possibility to test and test
several or all parts of the code.

• Validation and verification are then included naturally and one can develop
a better attitude to what is meant with an ethically sound scientific
approach.

• The above example allows the student to also test the mathematical
error of the algorithm for the trapezoidal rule by changing the number of
integration points. The students get trained from day one to think
error analysis.

• With a Jupyter notebook you can keep exploring similar examples and
turn them in as your own notebooks.

17

Python practicalities, Software and needed installations
We will make extensive use of Python as programming language and its myriad
of available libraries. You will find Jupyter notebooks invaluable in your work.

If you have Python installed (we strongly recommend Python3) and you feel
pretty familiar with installing different packages, we recommend that you install
the following Python packages via pip as

1. pip install numpy scipy matplotlib ipython scikit-learn mglearn sympy
pandas pillow

For Python3, replace pip with pip3.
For OSX users we recommend, after having installed Xcode, to install brew.

Brew allows for a seamless installation of additional software via for example

1. brew install python3

For Linux users, with its variety of distributions like for example the widely
popular Ubuntu distribution, you can use pip as well and simply install Python
as

1. sudo apt-get install python3 (or python for pyhton2.7)

etc etc.

Python installers
If you don’t want to perform these operations separately and venture into the
hassle of exploring how to set up dependencies and paths, we recommend two
widely used distrubutions which set up all relevant dependencies for Python,
namely

• Anaconda,

which is an open source distribution of the Python and R programming languages
for large-scale data processing, predictive analytics, and scientific computing,
that aims to simplify package management and deployment. Package versions
are managed by the package management system conda.

• Enthought canopy

is a Python distribution for scientific and analytic computing distribution and
analysis environment, available for free and under a commercial license.

Furthermore, Google’s Colab is a free Jupyter notebook environment that
requires no setup and runs entirely in the cloud. Try it out!

18

https://docs.anaconda.com/
https://www.enthought.com/product/canopy/
https://colab.research.google.com/notebooks/welcome.ipynb

Useful Python libraries
Here we list several useful Python libraries we strongly recommend (if you use
anaconda many of these are already there)

• NumPy is a highly popular library for large, multi-dimensional arrays and
matrices, along with a large collection of high-level mathematical functions
to operate on these arrays

• The pandas library provides high-performance, easy-to-use data structures
and data analysis tools

• Xarray is a Python package that makes working with labelled multi-
dimensional arrays simple, efficient, and fun!

• Scipy (pronounced “Sigh Pie”) is a Python-based ecosystem of open-source
software for mathematics, science, and engineering.

• Matplotlib is a Python 2D plotting library which produces publication
quality figures in a variety of hardcopy formats and interactive environments
across platforms.

• Autograd can automatically differentiate native Python and Numpy code.
It can handle a large subset of Python’s features, including loops, ifs,
recursion and closures, and it can even take derivatives of derivatives of
derivatives

• SymPy is a Python library for symbolic mathematics.

• scikit-learn has simple and efficient tools for machine learning, data mining
and data analysis

• TensorFlow is a Python library for fast numerical computing created and
released by Google

• Keras is a high-level neural networks API, written in Python and capable
of running on top of TensorFlow, CNTK, or Theano

• And many more such as pytorch, Theano etc

Your jupyter notebook can easily be converted into a nicely rendered PDF file
or a Latex file for further processing. For example, convert to latex as

pycod jupyter nbconvert filename.ipynb --to latex

And to add more versatility, the Python package SymPy is a Python library
for symbolic mathematics. It aims to become a full-featured computer algebra
system (CAS) and is entirely written in Python.

19

https://www.numpy.org/
https://pandas.pydata.org/
http://xarray.pydata.org/en/stable/
https://www.scipy.org/
https://matplotlib.org/
https://github.com/HIPS/autograd
https://www.sympy.org/en/index.html
https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://pypi.org/project/Theano/
http://www.sympy.org/en/index.html

Numpy examples and Important Matrix and vector han-
dling packages
There are several central software libraries for linear algebra and eigenvalue
problems. Several of the more popular ones have been wrapped into ofter
software packages like those from the widely used text Numerical Recipes.
The original source codes in many of the available packages are often taken from
the widely used software package LAPACK, which follows two other popular
packages developed in the 1970s, namely EISPACK and LINPACK. We describe
them shortly here.

• LINPACK: package for linear equations and least square problems.

• LAPACK:package for solving symmetric, unsymmetric and generalized
eigenvalue problems. From LAPACK’s website http://www.netlib.org
it is possible to download for free all source codes from this library. Both
C/C++ and Fortran versions are available.

• BLAS (I, II and III): (Basic Linear Algebra Subprograms) are routines that
provide standard building blocks for performing basic vector and matrix
operations. Blas I is vector operations, II vector-matrix operations and
III matrix-matrix operations. Highly parallelized and efficient codes, all
available for download from http://www.netlib.org.

Numpy and arrays
Numpy provides an easy way to handle arrays in Python. The standard way to
import this library is as

import numpy as np

Here follows a simple example where we set up an array of ten elements, all
determined by random numbers drawn according to the normal distribution,

n = 10
x = np.random.normal(size=n)
print(x)

We defined a vector x with n = 10 elements with its values given by the Normal
distribution N(0, 1). Another alternative is to declare a vector as follows

import numpy as np
x = np.array([1, 2, 3])
print(x)

Here we have defined a vector with three elements, with x0 = 1, x1 = 2 and
x2 = 3. Note that both Python and C++ start numbering array elements from
0 and on. This means that a vector with n elements has a sequence of entities
x0, x1, x2, . . . , xn−1. We could also let (recommended) Numpy to compute the
logarithms of a specific array as

20

http://www.netlib.org
http://www.netlib.org
http://www.numpy.org/

import numpy as np
x = np.log(np.array([4, 7, 8]))
print(x)

In the last example we used Numpy’s unary function np.log. This function
is highly tuned to compute array elements since the code is vectorized and does
not require looping. We normaly recommend that you use the Numpy intrinsic
functions instead of the corresponding log function from Python’s math module.
The looping is done explicitely by the np.log function. The alternative, and
slower way to compute the logarithms of a vector would be to write

import numpy as np
from math import log
x = np.array([4, 7, 8])
for i in range(0, len(x)):

x[i] = log(x[i])
print(x)

We note that our code is much longer already and we need to import the log
function from the math module. The attentive reader will also notice that the
output is [1, 1, 2]. Python interprets automagically our numbers as integers (like
the automatic keyword in C++). To change this we could define our array
elements to be double precision numbers as

import numpy as np
x = np.log(np.array([4, 7, 8], dtype = np.float64))
print(x)

or simply write them as double precision numbers (Python uses 64 bits as default
for floating point type variables), that is

import numpy as np
x = np.log(np.array([4.0, 7.0, 8.0])
print(x)

To check the number of bytes (remember that one byte contains eight bits for
double precision variables), you can use simple use the itemsize functionality
(the array x is actually an object which inherits the functionalities defined in
Numpy) as

import numpy as np
x = np.log(np.array([4.0, 7.0, 8.0])
print(x.itemsize)

Matrices in Python
Having defined vectors, we are now ready to try out matrices. We can define
a 3× 3 real matrix Â as (recall that we user lowercase letters for vectors and
uppercase letters for matrices)

import numpy as np
A = np.log(np.array([[4.0, 7.0, 8.0], [3.0, 10.0, 11.0], [4.0, 5.0, 7.0]]))
print(A)

21

If we use the shape function we would get (3, 3) as output, that is verifying that
our matrix is a 3× 3 matrix. We can slice the matrix and print for example the
first column (Python organized matrix elements in a row-major order, see below)
as

import numpy as np
A = np.log(np.array([[4.0, 7.0, 8.0], [3.0, 10.0, 11.0], [4.0, 5.0, 7.0]]))
print the first column, row-major order and elements start with 0
print(A[:,0])

We can continue this was by printing out other columns or rows. The example
here prints out the second column

import numpy as np
A = np.log(np.array([[4.0, 7.0, 8.0], [3.0, 10.0, 11.0], [4.0, 5.0, 7.0]]))
print the first column, row-major order and elements start with 0
print(A[1,:])

Numpy contains many other functionalities that allow us to slice, subdivide etc
etc arrays. We strongly recommend that you look up the Numpy website for
more details. Useful functions when defining a matrix are the np.zeros function
which declares a matrix of a given dimension and sets all elements to zero

import numpy as np
n = 10
define a matrix of dimension 10 x 10 and set all elements to zero
A = np.zeros((n, n))
print(A)

or initializing all elements to
import numpy as np
n = 10
define a matrix of dimension 10 x 10 and set all elements to one
A = np.ones((n, n))
print(A)

or as unitarily distributed random numbers (see the material on random number
generators in the statistics part)

import numpy as np
n = 10
define a matrix of dimension 10 x 10 and set all elements to random numbers with x \in [0, 1]
A = np.random.rand(n, n)
print(A)

22

http://www.numpy.org/
http://www.numpy.org/

Meet the Pandas

Another useful Python package is pandas, which is an open source library
providing high-performance, easy-to-use data structures and data analysis tools
for Python. pandas stands for panel data, a term borrowed from econometrics
and is an efficient library for data analysis with an emphasis on tabular data.

pandas has two major classes, the DataFrame class with two-dimensional
data objects and tabular data organized in columns and the class Series with
a focus on one-dimensional data objects. Both classes allow you to index data
easily as we will see in the examples below. pandas allows you also to perform
mathematical operations on the data, spanning from simple reshapings of vectors
and matrices to statistical operations.

The following simple example shows how we can, in an easy way make tables
of our data. Here we define a data set which includes names, place of birth and
date of birth, and displays the data in an easy to read way. We will see repeated
use of pandas, in particular in connection with classification of data.

import pandas as pd
from IPython.display import display
data = {’First Name’: ["Frodo", "Bilbo", "Aragorn II", "Samwise"],

’Last Name’: ["Baggins", "Baggins","Elessar","Gamgee"],
’Place of birth’: ["Shire", "Shire", "Eriador", "Shire"],
’Date of Birth T.A.’: [2968, 2890, 2931, 2980]
}

data_pandas = pd.DataFrame(data)
display(data_pandas)

In the above we have imported pandas with the shorthand pd, the latter
has become the standard way we import pandas. We make then a list of various
variables and reorganize the above lists into a DataFrame and then print out a
neat table with specific column labels as Name, place of birth and date of birth.
Displaying these results, we see that the indices are given by the default numbers

23

https://pandas.pydata.org/

from zero to three. pandas is extremely flexible and we can easily change the
above indices by defining a new type of indexing as

data_pandas = pd.DataFrame(data,index=[’Frodo’,’Bilbo’,’Aragorn’,’Sam’])
display(data_pandas)

Thereafter we display the content of the row which begins with the index
Aragorn

display(data_pandas.loc[’Aragorn’])

We can easily append data to this, for example
new_hobbit = {’First Name’: ["Peregrin"],

’Last Name’: ["Took"],
’Place of birth’: ["Shire"],
’Date of Birth T.A.’: [2990]
}

data_pandas=data_pandas.append(pd.DataFrame(new_hobbit, index=[’Pippin’]))
display(data_pandas)

Here are other examples where we use the DataFrame functionality to
handle arrays, now with more interesting features for us, namely numbers. We
set up a matrix of dimensionality 10 × 5 and compute the mean value and
standard deviation of each column. Similarly, we can perform mathematial
operations like squaring the matrix elements and many other operations.

import numpy as np
import pandas as pd
from IPython.display import display
np.random.seed(100)
setting up a 10 x 5 matrix
rows = 10
cols = 5
a = np.random.randn(rows,cols)
df = pd.DataFrame(a)
display(df)
print(df.mean())
print(df.std())
display(df**2)

Thereafter we can select specific columns only and plot final results
df.columns = [’First’, ’Second’, ’Third’, ’Fourth’, ’Fifth’]
df.index = np.arange(10)

display(df)
print(df[’Second’].mean())
print(df.info())
print(df.describe())

from pylab import plt, mpl
plt.style.use(’seaborn’)
mpl.rcParams[’font.family’] = ’serif’

df.cumsum().plot(lw=2.0, figsize=(10,6))
plt.show()

df.plot.bar(figsize=(10,6), rot=15)
plt.show()

24

We can produce a 4× 4 matrix
b = np.arange(16).reshape((4,4))
print(b)
df1 = pd.DataFrame(b)
print(df1)

and many other operations.
The Series class is another important class included in pandas. You can

view it as a specialization of DataFrame but where we have just a single
column of data. It shares many of the same features as DataFrame. As
with DataFrame, most operations are vectorized, achieving thereby a high
performance when dealing with computations of arrays, in particular labeled
arrays. As we will see below it leads also to a very concice code close to the
mathematical operations we may be interested in. For multidimensional arrays,
we recommend strongly xarray. xarray has much of the same flexibility as
pandas, but allows for the extension to higher dimensions than two.

Introduction to Git and GitHub/GitLab and similar
Git is a distributed version-control system for tracking changes in any set of files,
originally designed for coordinating work among programmers cooperating on
source code during software development.

The reference document and videos here give you an excellent introduction
to the git.

We believe you will find version-control software very useful in your work.

GitHub, GitLab and many other
GitHub, GitLab, Bitbucket and other are code hosting platforms for version
control and collaboration. They let you and others work together on projects
from anywhere.

All teaching material related to this course is open and freely available via
the GitHub site of the course. The video here gives a short intro to GitHub.

See also the overview video on Git and GitHub.

Useful Git and GitHub links
These are a couple references that we have found useful (git commands, mark-
down, GitPages):

• https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

• https://education.github.com/git-cheat-sheet-education.pdf

• https://guides.github.com/features/pages/

25

http://xarray.pydata.org/en/stable/
https://git-scm.com/
https://git-scm.com/doc
https://github.com/
https://about.gitlab.com/
https://bitbucket.org/product?&aceid=&adposition=&adgroup=92266806717&campaign=1407243017&creative=414608923671&device=c&keyword=bitbucket&matchtype=e&network=g&placement=&ds_kids=p51241248597&ds_e=GOOGLE&ds_eid=700000001551985&ds_e1=GOOGLE&gclid=Cj0KCQiA6Or_BRC_ARIsAPzuer_yrxzs-R8KDVdF0-DduJR9hTBYcjdE8L9_CkA9eyz8XT7-3bFGOpQaAqe2EALw_wcB&gclsrc=aw.ds
https://www.youtube.com/watch/w3jLJU7DT5E?reload=9
https://mediaspace.msu.edu/media/t/1_8mgx3cyf
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://education.github.com/git-cheat-sheet-education.pdf
https://guides.github.com/features/pages/

Useful IDEs and text editors
When dealing with homeworks, at some point you would need to use an editor,
or an integrated development envinroment (IDE). As an IDE, we would like to
recommend anaconda since we end up using jupyter-notebooks. anaconda
runs on all known operating systems.

If you prefer editing Python codes, there are several excellent cross-platform
editors. If you are in a Windows environment, word is the classical text editor.

There is however a wealth of text editors and/ord IDEs that run on all
operating systems and functions well with Python. Some of the more popular
ones are

• Atom

• Sublime

26

https://atom.io/
https://www.sublimetext.com/

