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Activities during Finals Week
We will keep our in person and zoom sessions MWF 3pm-5pm open for discussions
and more, feel free to swing by or just schedule a separate zoom session if these
hours don’t fit.

Examples of Lagrangian theory: Small Vibrations and Nor-
mal Modes
Two examples are provided for solving for normal modes. These are solutions with
multiple generalized coordinates, where the motion is that of simple harmonic
motion. However, the motion is only simple for a particular set of coordinates q1
and q2,

q1 = A cos(ω1t), (1)
q2 = B cos(ω2t),

while it is not necessarily simple in other coordinates. For example if x =
q1 + q2, and y = q1 − q2, the x and y motions will contain mixtures of multiple
frequencies. For many problems, or in the limit of small vibrations about a
minimum, there is some coordinate system where the motion is simple. These are
normal modes. Characterizing the normal modes involves finding the frequencies,
ωi, and the coordinate system where the motion is simple for each coordinate.
This involves finding the direction, or the linear combination of xi that form
the coordinates qi in which the motion is that of a single oscillator in each
coordinate.

Coupled Springs
For a first example, we consider a system of springs, where we write the La-
grangian, then find the normal modes. For the second example, a double
pendulum is considered. In this case, one must first make a small angle ex-
pansion before finding the modes. In principle, problems could have the same
number of normal modes a degrees of freedom. For example, a system of 7
particles moving in three dimensions has 21 degrees of freedom. However, some
of the degrees of freedom do not have oscillatory behavior. For example, for a
rigid body in free space, the angles describing the orientation evolve, but do not
oscillate. Also, the center-of-mass coordinates of a system of particles isolated
from outside particles moves at constant velocity. One can also describe these as
normal modes, but acknowledge that their characteristic frequency is zero, as
there are no restoring forces.
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Coupled Springs, Part 1
Consider two springs, whose relaxed lengths are ℓ, connected to three masses as
depicted in the figure here. Describe the two normal modes of the motion. We
can write the Lagrangian as

L = m

2 ẋ2
1 + mẋ2

2 + m

2 ẋ2
3 − k

2 (x2 − x1 − ℓ)2 − k

2 (x3 − x2 − ℓ)2.

There are three coordinates, thus there are three equations of motion,

mẍ1 = −k(x1 − x2 + ℓ)
2mẍ2 = −k(x2 − x1 − ℓ) − k(x2 − x3 + ℓ)

= −k(2x2 − x1 − x3)
mẍ3 = −k(x3 − x2 + ℓ).

Coupled Springs, Part 2
This is a bit complicated because the center-of-mass motion does not easily
separate from the three equations. Instead, choose the following coordinates,

X = x1 + 2x2 + x3

4 ,

q1 = x1 − x2 + ℓ,

q3 = x3 − x2 − ℓ.

Coupled Springs, Part 3
In these coordinates the potential energy only involves two coordinates,

U = k

2 (q2
1 + q2

3).

To express the kinetic energy express x1, x2 and x3 in terms of X, q1 and q3,

x1 = (3q1 − q3 − 4ℓ + 4X)/4,

x2 = (4X − q1 − q3)/4,

x3 = (3q3 − q1 + 4ℓ + 4X)/4.

Coupled Springs, Part 4
The kinetic energy and Lagrangian are them
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T = m

2
1
16(3q̇1 − q̇3 + 4Ẋ)2 + m

1
16(4Ẋ − q̇1 − q̇3)2 + m

2
1
16(3q̇3 − q̇1 + 4Ẋ)2

= 3m

8 (q̇2
1 + q̇2

3) − m

4 q̇1q̇3 + 2mẊ2,

L = 3m

8 (q̇2
1 + q̇2

3) − m

4 q̇1q̇3 + 2mẊ2 − k

2 q2
1 − k

2 q2
3 .

The three equations of motion are then,

3
4mq̈1 − 1

4mq̈3 = −kq1,

3
4mq̈3 − 1

4mq̈1 = −kq3,

4MẌ = 0.

Coupled Springs, Part 5
The last equation simply states that the center-of-mass velocity is fixed. One
could obtain the same result by summing the equations of motion for x1, 2x2
and x3 above. The second two equations are more complicated. To solve them,
we assume a form

q1 = Aeiωt,

q3 = Beiωt,

Because this is a linear equation, we can multiply the solution by a constant
and it will still be a solution. Thus, we can set B = 1, then solve for A, effectively
solving for A/B. Putting this guess into the equations of motion,

−3
4

A

B
ω2 + 1

4ω2 = −ω2
0

A

B
,

−3
4ω2 + 1

4
A

B
ω2 = −ω2

0 .

Coupled Springs, Part 6
This is two equations and two unknowns, ω2 and A/B. Substituting for A/B
gives a quadratic equation,

ω4 − 3ω2
0ω2 + 2ω4

0 = 0,

ω2
0 ≡ k/m.

The two solutions are
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(1) ω = ω0, A = −B,

(2) ω = ω0
√

2, A = B.

Coupled Springs, Part 7
The first solution corresponds to the two outer masses moving in opposite direc-
tions, in sync, with the middle mass fixed. The second solution has both outer
masses moving in the same direction, but with the center mass moving opposite.
These two solutions are referred to as normal modes, and are characterized
by their frequency and by the linear combinations of coordinates that oscillate
together. In general, the solution is a linear combination of normal modes,
which usually results in a chaotic looking motion. However, once the solution is
expressed in terms of the normal modes, each of which oscillates independently in
a simple manner, one can better understand the motion. Further, the frequencies
of these modes represent the natural resonant frequencies of the system. This is
important in the construction of many structures, such as bridges or vehicles.

Double Pendulum, Part 1
Consider a double pendulum confined to the x − y plane, where y is vertical. A
mass m is connected to the ceiling with a massless string of length ℓ. A second
mass m hangs from the first mass with an identical massless string of the same
length. Using θ1 and θ2 to describe the orientations of the strings relative to
the vertical axis, find the Lagrangian and derive the equations of motion, both
for arbitrary angles and in the small-angle approximation. Finally, express the
equations of motion in the limit of small oscillations.

Double Pendulum, Part 2
The kinetic and potential energies are:

T = 1
2mℓ2θ̇2

1 + 1
2m

{
(ℓθ̇1 cos θ1 + ℓθ̇2 cos θ2)2 + (ℓθ̇1 sin θ1 + ℓθ̇2 sin θ2)2}

= 1
2mℓ2 {

2θ̇2
1 + θ̇2

2 + 2θ̇1θ̇2 cos(θ1 − θ2)
}

,

U = mgℓ(1 − cos θ1) + mg [ℓ(1 − cos θ1) + ℓ(1 − cos θ2)]
= mgℓ(3 − 2 cos θ1 − cos θ2)

Double Pendulum, Part 3
Lagrange’s equations for θ1 lead to
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mℓ2 d

dt

{
2θ̇1 + θ̇2 cos(θ1 − θ2)

}
= −mℓ2θ̇1θ̇2 sin(θ1 − θ2) − 2mgℓ sin θ1,

2θ̈1 + θ̈2 cos(θ1 − θ2) + θ̇2
2 sin(θ1 − θ2) = −2ω2

0 sin θ1,

ω2
0 ≡ g/ℓ,

and the equations for θ2 are

mℓ2 d

dt

{
θ̇2 + θ̇1 cos(θ1 − θ2)

}
= mℓ2θ̇1θ̇2 sin(θ1 − θ2) − mgℓ sin θ2,

θ̈2 + θ̈1 cos(θ1 − θ2) = −ω2
0 sin θ2.

Double Pendulum, Part 4
For small oscillations, one can only consider terms linear in θ1 and θ2 or their
derivatives,

2θ̈1 + θ̈2 = −2ω2
0θ1, (2)

θ̈1 + θ̈2 = −ω2
0θ2.

To find the solutions, assume they are of the form θ1 = Aeiωt, θ2 = Beiωt.
Solve for ω and A/B, noting that B is arbitrary.

Double Pendulum, Part 5
Plug in the desired form and find

eiωt(−2ω2A − ω2B) = eiωt(−2ω2
0A),

eiωt(−ω2A − ω2B) = eiωt(−ω2
0B).

We can treat B as arbitrary and set it to unity. When we find A, it is the
same as A/B for arbitrary B. This gives the equations

2ω2A + ω2 = 2ω2
0A,

ω2A + ω2 = ω2
0 .

Double Pendulum, Part 6
This is two equations and two unknowns. Solving them leads to a quadratic
equation with solutions
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A/B = ± 1√
2

,

ω2 = ω2
0

1 ± 1/
√

2
.

Again, these two solutions are the normal modes, and the general solution is
a sum of the two solutions, with two arbitrary constants. For the angles θ1 and
θ2 are:

θ1 = A+√
2

eiω+t, θ2 = A+eiω+t,

θ1 = −A−√
2

eiω−t, θ2 = A−eiω−t,

ω± = ω0

√
1

1 ± 1/
√

2
.

Double Pendulum, Part 7
One can also express the solution in vector notation, with the vectors having
arbitrary amplitudes A+ and A−,

θ+ =
( 1√

2
1

)
A+eiω+t,

θ− =
( −1√

2
1

)
A−eiω−t.

Here, the upper/lower components of the vector describe θ1/θ2 respectively.

Double Pendulum, Part 8
These problems can be treated as linear algebra exercises. Linear algebra is
not used in this course, but nonetheless we describe how this works for the
curious student. In the limit of small vibrations, the equations of motion can be
expressed in the form,

Mq̈ = −Kq,

a form that looks like the spring equation. However, q is an n−dimensional
vector and M and k are n × n matrices. In the double pendulum example, the
dimensionality is 2 and the q refers to the θ1 and θ2, and the matrices for M
and K can be read off as
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M =
[
2 1
1 1

]
,

and

K =
[
2ω2

0 0
0 ω2

0

]
.

Double Pendulum, Part 9
Multiplying both sides of the equation by the inverse matrix M−1,

q̈ = −
(
M−1K

)
q.

Here,

M−1 =
(

1 −1
−1 2

)
,

M−1K =
(

2 −1
−2 2

)
ω2

0 .

Double Pendulum, Part 10
One can find a transformation, basically a rotation, that transforms to a frame
where M−1K is diagonal. In this coordinate system the diagonal components of
M−1K represent the squared frequencies of the normal modes,

M−1K → −
(

ω2
+ 0
0 ω2

−

)
,

and are known as “eigen” frequencies. The corresponding unit vectors,(
1
0

)
and

(
0
1

)
in the new coordinate system,

can be rotated back into the original frame, and become the solutions for
the normal modes. These are then called “eigenvectors”, which are the same as
the normal modes. Finding the eigenfrequencies is performed by realizing that
the determinant of a matrix is unchanged by the rotation between coordinate
systems. Writing the equations of motion as an eigenvalue problem,

[A − λi⊮] ui = 0, A ≡ M−1K, λi ≡ ω2
i . (3)
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Double Pendulum, Part 11
In the coordinate system where M−1K is diagonal, and the forms for ui are
simple this requires that in that system, the diagonal elements of M−1K are the
eigenvalues, ω2

i . For each ω2
i , the determinant |A − λi⊮| must vanish. This is

then true in any coordinate system,

det [A − λ⊮] = 0, (4)

which for a 2 × 2 matrix becomes

∣∣∣∣ A11 − λ A12
A21 A22 − λ

∣∣∣∣ = 0, (5)

A11A22 − λA11 − λA22 + λ2 − A21A12 = 0. (6)

Double Pendulum, Part 12
One can solve a quadratic equation for λ, which gives two eigenvalues corre-
sponding to ω2

+ and ω2
− found above. Choosing one of the eigenvalues, one can

insert one of the eigenvalues λi into the eigenvalue problem and solve for ui,
then choose the other eigenvalue and solve for the other corresponding vector.

If this were a 3-dimensional set of equations, the determinant would include
terms like λ3 and would become a cubic equation with three eigenvalues. One
would then solve for three eigenvectors. If one has a system with dimensionality
n > 2, one usually resorts to solving the problem numerically due to the messiness
of the algebra. The main programming languages all have packages which readily
diagonalize matrices and find eigenvectors and eigenvalues.

Conservation Laws
Energy is conserved only when the Lagrangian has no explicit dependence on
time, i.e. L(q, q̇), not L(q, q̇, t). To show this, we first define the Hamiltonian,

H =
∑

i

(
q̇i

∂L

∂q̇i

)
− L. (7)

After showing that H is conserved, i.e. (d/dt)H = 0, we then show that H
can be identified with the total energy, H = T + V .

One can see that H is conserved by applying first using the chain rule for
(d/dt)H, then applying Lagrange’s equations,
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d

dt
H =

∑
i

{
q̈i

∂L

∂q̇i
+ q̇i

d

dt

(
∂L

∂q̇i

)
− ∂L

∂q̇i
q̈i − ∂L

∂qi
q̇i

}
(8)

=
∑

i

{
q̈i

∂L

∂q̇i
+ q̇i

∂L

∂qi
− ∂L

∂q̇i
q̈i − ∂L

∂qi
q̇i

}
= 0.

Convervation Laws, part 2
These steps assumed that L had no explicit time dependence, i.e. L is a function
of q and q̇, but not of t.

Next, we show that L can be identified with the energy. Because V does not
depend on q̇,

H =
∑

i

∂T

∂q̇i
q̇i − T + V. (9)

If the kinetic energy has a purely quadratic form in terms of q̇,

T =
∑

ij

Aij(q)q̇iq̇j , (10)

the expression for the energy becomes

H =
∑

ij

2Aij(q)q̇iq̇j −
∑

ij

Aij(q)q̇iq̇j + V (11)

= T + V.

Convervation Laws, part 3
The proof that H equals the energy hinged on the fact that the kinetic energy
was quadratic in q̇. This can be attributed to time-reversal symmetry. Because
the Cartesian coordinates xi do not depend on q̇i or on time, ẋi = (∂xi/∂qj)q̇j .
Thus, the kinetic energy, T = mẋ2

i /2, should be proportional to two powers of q̇,
which validates the assumption above.

Convervation Laws, part 4
Here, energy conservation is predicated on the Lagrangian not having an explicit
time dependence. Without an explicit time dependence the equations of motion
are unchanged if one translates a fixed amount in time because the physics does
not depend on when the clock starts. In contrast, the absolute time becomes
relevant if there is an explicit time dependence. In fact, conservation laws can
usually be associated with symmetries. In this case the translation symmetry in
time leads to energy conservation.
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For another example of how symmetry leads to conservation laws, consider a
Lagrangian for a particle of mass m moving in a two-dimensional plane where
the generalized coordinates are the radius r and the angle θ. The kinetic energy
would be

T = 1
2m

{
ṙ2 + r2θ̇2}

, (12)

and if the potential energy V (r) depends only on the radius r and not on
the angle, Lagrange’s equations become

d

dt
(mṙ) = −∂V

∂r
+ mθ̇2r, (13)

d

dt
(mr2θ̇) = 0.

Convervation Laws, part 4
The second equation implies that mr2θ̇ is a constant. Indeed, it is the angular
momentum which is conserved for a radial force. Here, the conservation of
angular momentum is associated with the independence of the physics to changes
in θ, or in other words, rotational invariance. Once one knows the fact that
L = mr2θ̇ is conserved, it can be inserted into the equations of motion for ṙ,

mr̈ = −∂V

∂r
+ L2

mr3 . (14)

This is related to Emmy Noether’s theorem
Simply stated, if the Lagrangian L is independent of qi, one can see that the

quantity ∂L/∂q̇i is conserved,

d

dt

∂L

∂q̇i
= 0. (15)

Convervation Laws, Another Example
Another easy example is in Cartesian coordinates where the potential depends
only on x and y but not on z. In that case, there is a translational symmetry.
From the last equation, this translates into conservation of the momentum in
the z direction.

Consider a pair of particles of mass m1 and m2 where the potential is of the
form

U(r1, r2) = Va(|m1r1 + m2r2|/(m1 + m2)) + Vb(|r1 − r2|).

Using symmetry arguments alone, are there any conserved components of
the momentum? or the angular momentum??

There is no translational invariance, hence there are no conserved components
of the momentum. However, there is rotational invariance about any axis that
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goes through the origin. Hence, there is angular momentum conservation in all
three directions. Symmetry arguments are great ways to recognize the existence
of conserved quantities, but actually expressing them in terms of coordinates
can be tricky. For instance, you may need to write the Lagrangian in terms of
angles.

Final exam from spring semester 2022
Exercise 1, Two-body Problems and Conservative Forces (total 35pt).
The relevant material can be found in Taylor chapters 4 and 8. Homework sets
5, 6-9 and the chapters on forces and two-body problems from the lecture notes
may also be of use.

This exercise and the next are follow-ups of homework 6. There we studied
the so-called Lennard-Jones potential which is widely used in molecular dynamics
calculations and in the simulations of quantum liquids. This potential is based
on parametrizations from experiments. In molecular dynamics calculations the
assumption is that atoms move according to the laws of Newton, given the correct
model for interactions. We can say then that quantum-mechanical degrees of
freedom stemming from complicated interactions between electrons and protons
in an atom, are parametrized in terms of an effective potential.

We will limit ourselves to a two-body problem.
The goal of this exercise is to model a gas of argon atoms (here two atoms only

interacting), where the atoms interact according to the famous Lennard-Jones
potential,

V (r) = 4ε
(

(σ

r
)12 − (σ

r
)6

)
, (16)

where r is the distance between two atoms, r = |ri − rj |, that is the norm
of the relative distance vector r. The quantities σ and ε are parameters which
determine which chemical compound is modelled. This potential is a good
approximation for noble gases like helium, neon, argon and other.

We start first with a basic study of the potential

• 1a (5pt): Plot the potential as a function of r with ε = 1 and σ = 1, for
example for r ∈ [0.9, 3].

• 1b (5pt): The behaviour of V (r) is vastly different for r < σ and r > σ.
Which term in the potential, (16), dominates in each case and what is the
effect?

• 1c (5pt): Find and characterize the equilibrium points of the potential.

• 1d (5pt): Describe qualitatively the motion of two atoms which start at
rest separated by a distance of 1.5σ. What if they start with a separation
of 0.95σ? (Hint: use the graph of the potential.)

Then we switch our attention to the equations of motion.
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• 1e (5pt): Find the force on atom i at position ri from atom j at position
rj . Is this a conservative force?

• 1f (5pt): Are linear and angular momentum conserved? You need to show
this by calculating the relevant quantities. Hint: see homework set 4 and
exercise 2.

• 1g (5pt): Show that the equation of motion for atom i is

d2ri

dt2 = 24ε

m

∑
j ̸=i

(
2( σ

|ri − rj
|)12 − ( σ

|ri − rj
|)6

)
ri − rj

|ri − rj |2
.

Exercise 2, Two-body Problems and Conservative Forces, Numerical
Studies (50pt). In this exercise we will solve the previous equations of motion
numerically and study the solutions. Here you can use the same codes you
developed in homework sets 5-9 and the second midterm.

Numerical accuracy is reduced when computing with values which are many
orders of magnitude apart. This is often an issue in physics, and molecular
dynamics is no exception. For example, the mass of argon is smaller than
10E-25kg, while typical length scales are on the order of nanometers, 10E-9m.

The remedy is to change units so that most quantities are close to 1. From
(16) it is clear that σ and ε are the typical scales for length and energy.

• 2a (5pt): Introduce the scaled coordinates ri
′ = ri/σ and show that

the equation of motion can be rewritten in terms of these coordinates as
(where t′ = t/τ for a suitable choice of τ .)

d2ri
′

dt′2 = 24
∑
j ̸=i

(
2|ri

′ − rj
′|−12 − |ri

′ − rj
′|−6) ri

′ − rj
′

|ri
′ − rj

′|2
, (17)

• 2b (5pt): What is the characteristic time scale τ , and what is its value for
argon, which has σ = 3.405Å (1Å=1E-10m), m = 39.95u (with 1u=1.66E-
27kg) and ε = 1.0318 E-2eV (1eV=1.602E-19J)?

We switch now to a numerical procedure and study the simulation of two
interacting atoms.

• 2c (10pt): Write a function which solves (17) for two atoms and find the
positions and velocities of the atoms as a function of time. Implement either
the Euler-Cromer or the Velocity-Verlet methods to solve the equations of
motion (you can reuse your codes from homework sets 5-9 or the second
midterm).

• 2d (5pt): Simulate the motion of two atoms which start at rest separated
by a distance of 1.5σ. Use ∆t′ = 0.01, simulate until t′ = 5 and integrate
with one of the above methods. Plot the distance between the atoms as a
function of time. How does the motion fit with your expectations? What
type of motion do you expect?
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• 2e (5pt): Repeat the previous tasks, but now with an initial separation
of 0.95σ. Explain your results.

• 2f (10pt): Compute and plot the kinetic, potential and total energy as
a function of time for the time interval from exercise 2d and the initial
conditions from 2d and 2e. Should the total energy be conserved? Why,
or why not? Here you can use your codes from the second midterm for
computing the energies.

• 2g (10pt): Is angular momentum conserved (see your answers to 1f). How
would you show this numerically? Hint: see your answers to the second
midterm, exercise 1c.

Exercise 3, Lagrangian formalism and the Lennard-Jones potential
(35pt). The relevant chapters from Taylor are chapters 6-7 and 8. In addition
he lectures notes on the Lagrangian Formalism and Calculus of Variations can
be of use. You need also results from the two-body problem of chapter 8 of
Taylor and the lecture notes two-body problems.

We will stay with a two-body problem only with particles 1 and 2, as in the
two previous exercises. We introduce the relative mass µ = m1m2/M where the
total mass M = m1 + m2, the sum of the masses m1 and m2.

• 3a (5pt): Define the center-of-mass position R and the relative position r
in terms of the masses and the positions of particles one and two r1 and r2,
respectively. Define then the center-of-mass frame by setting R = 0. Show
then that you can write the total angular momentum as L = µ(r×ṙ). Hint:
See Taylor section 8.3. How do you interpret the angular momentum? Why
can we reduce the motion of two particles to a problem in two dimensions
only?

• 3b (10pt): We introduce polar coordinates with r ∈ [0, ∞) and ϕ ∈ [0, 2π].
The quantity r is the absolute value (magnitude) of the relative distance.
Show that you can write the kinetic energy as K = 1/2µ(ṙ2 + r2ϕ̇2).

• 3c (5pt): Include the potential energy for the Lennard-Jones potential
and write out the Lagrangian using the coordinates r and ϕ. Does the
potential energy depend on ϕ?

• 3d (10pt): Use the Euler-Lagrange equations to find the equations of
motion for r and ϕ. Does the equation of motion for r agree with what
you derived in exercise 1? Comment your results.

• 3e (5pt): Use the equation of motion for ϕ to show that angular momentum
is conserved. Comment your results. Can you infer this from the form of
the potential? Hint: see your answer to 3c.
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What? Me worry? No final traditional exam in this course!

What did I learn in school this year?
Does this figure that match the experiences you have made this semester?

Topics we have covered this year
• How to derive equations of motion based on forces

• Forces, work, energy, angular momentum, linear momentum and conserva-
tion laws

• Various types of motions, falling objects, objects moving in various fields
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• Analysing energy diagrams and defining effective potential

• Small oscillations, Harmonic oscillator potential and equations of motion

• Transformation of variables that allow for analytical solutions, example
two-body problems

• Central forces and two-body problems, center-of-mass and relative coordi-
nates as reference frame

• Two-body scattering problems, classical scattering cross section

• Variational calculus and Lagrangian formalism

• Deriving equations of motion from Lagrangian formalism only

• Lagrangian formalism with constraints

And how to solve these problems
We have studied many systems numerically, from falling objects with and without
friction/air resistance, small oscillations (harmonic oscillator), gravitational
problems and other central force problems, rotations and the classical pendulum.

• Euler-Cromer and Velocity-Verlet as energy conserving algorithms (time-
independent forces)

• Runge-Kutta family of algorithms for time-dependent forces

• Numerical integration using the Trapezoidal, midpoint and Simpson’s rule.

One program to rule them all?
DeltaT = 0.001
#set up arrays
tfinal = 10 # in years
n = ceil(tfinal/DeltaT)
# set up arrays for t, a, v, and x
t = np.zeros(n)
v = np.zeros((n,3))
r = np.zeros((n,3))
# Initial conditions as compact 3-dimensional arrays
r0 = np.array([1.0,0.0,0.0])
v0 = np.array([0.0,2*pi,0.0])
r[0] = r0
v[0] = v0
# Start integrating using Euler's method
for i in range(n-1):

# Set up the acceleration for force that depends only on position
a = Force(r)/mass
# update velocity, time and position using the Euler-Cromer forward
v[i+1] = v[i] + DeltaT*a
r[i+1] = r[i] + DeltaT*v[i]
t[i+1] = t[i] + DeltaT
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The overarching idea is that as soon as we have analyzed the forces at play,
we can reuse our programs (algorithms) with new forces, without having to recur
to the few analytical cases we can solve.

Learning outcomes
After the course you should:

1. be able to analyze forces that act on objects, apply Newton’s laws to deter-
mine the equations of motion, and solve these analytically and numerically,

2. Know about inertial frames and their relation to accelerating and rotating
frames (non-inertial frames)

3. Know about forces, work, energy, angular momentum, linear momentum
and conservation laws

4. Know about various types of motions, falling objects, objects moving in
various fields

5. Know how to analyze energy diagrams and defining effective potential

6. Have knowledge about small oscillations, Harmonic oscillator potential and
equations of motion

7. Have knowledge about transformation of variables that allow for analytical
solutions, example two-body problems

8. Have knowledge about central forces and two-body problems, center-of-
mass and relative coordinates as reference frame

9. Have knowledge about two-body scattering problems, classical scattering
cross section

10. Have knowledge about Variational calculus and Lagrangian formalism

11. Know how to derive the equations of motion from the Lagrangian formalism
with and without constraints (Lagrangian multipliers)

Competences and Skills
To solve many of these problems, we have through different midterms and weekly
exercises studied many systems numerically, from falling objects with and without
friction/air resistance, small oscillations (harmonic oscillator), gravitational
problems and other central force problems, rotations and the classical pendulum.
To solve these systems, we have applied different algorithms for solving differential
equations. These are

1. Euler-Cromer and Velocity-Verlet as energy conserving algorithms (time-
independent forces)
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2. Runge-Kutta family of algorithms for time-dependent forces

We have also, in connection with for example the work-energy theorem studied
methods for evaluating integrals. These are (although we never wrote codes in
exercises/midterms)

1. Numerical integration using the Trapezoidal, midpoint and Simpson’s rule.

Computations? Why?
You should also have acquired skills in structuring a numerical project, as well
as having developed a critical understanding of the pros and cons of the methods
and an understanding of their limits and what can go wrong. Computing means
solving scientific problems using computers. It covers numerical as well as
symbolic computing. Computing is also about developing an understanding of
the scientific process by enhancing algorithmic thinking when solving problems.
Computing competence has always been a central part of the science and
engineering education. In particular, some of the competences that are important
in the development of your own understanding of computations, we would like
to emphasize

1. derivation, verification, and implementation of algorithms

2. understanding what can go wrong with algorithms

3. overview of important, known algorithms for solving mechanics problems
(To a extent large differential equations and integration)

4. understanding how algorithms are used to solve mathematical problems

5. Making science (your results) reproducible

6. algorithmic thinking for gaining deeper insights about scientific problems

18



Procrastination... the curse of all?

Enjoy this video
And research shows that procrastinating enhances creativity!!

However ...
Since grades are due on May 9, we need to have a hard deadline for the final
exam, May 5 at midnight.
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https://www.youtube.com/watch?v=arj7oStGLkU
http://www.nytimes.com/2016/01/17/opinion/sunday/why-i-taught-myself-to-procrastinate.html?_r=0


Best wishes to you all and thanks so much for your heroic
efforts this semester

20


