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Constrained motion
Sometimes an auxiliary constraint is added to the problem (beyond fixing the
end poits y1 and y2). Just ahead, we will work on the example of a hanging chain.
The shape of the curve minimizes the potential energy, under the constraint
of a fixed length of chain. Before presenting such an example we first review
the method of Lagrange multipliers as a method for finding minima or maxima
under constraints.

Imagine a function f(x1, x2 · · · xn) for which you wish to find the minima.
Additionally, you are given a constraint

C(x1 · · · xn) = 0 (1)

Constrained motion, Condition for a Minimum
The usual condition for a a minimum is

∂f

∂xi
= 0, or ∇f = 0. (2)

which would be n equations for the n variables. The gradient of a scalar is
a vector, so you should think of ∇ as ∇. However, the solution will likely not
satisfy the constraint, i.e. the point at which f(x1 · · · xn) has an extrema, may
not be a point where C(x1 · · · xn) = 0.

Constrained motion, Necessary Conditions
A necessary condition for the solution is that

∇f · ϵ = 0, (3)

for any infinitesimal vector ϵ if ϵ satisfies the condition

δC = ∇C · ϵ = 0. (4)

Constrained motion
That is to say if I take a small step in a direction that doesn’t change the
constraint, then f must not change if it is an extrema. Not changing the
constraint implies the step is orthogonal to ∇C. As there are n dimensions of x,
the vector ∇C defines one direction, and ϵ can be in any of the n − 1 directions
orthogonal to ∇C. If ∇f · ϵ = 0 for ANY of the n − 1 directions of ϵ orthogonal
to ∇C, then

∇f || ∇C. (5)
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Because the two vectors are parallel you can say there must exist some
constant λ such that

∇(f − λC) = 0. (6)

Constrained motion, Lagrange Multiplier
Here, λ is known as a Lagrange multiplier. Satisfying this equation is a necessary,
but not a sufficient condition. One could add a constant to the constraint and
the gradient would not change. One must find the correct value of λ that satisfies
the constraint C = 0, rather than C = some other constant. The strategy is
then to solve thw above equation then adjust λ until one finds the x1 · · · xn that
gives C(x1 · · · xn) = 0.

The method of Lagrange multipliers is counter-intuitive to one’s intuition
to use the constraint to reduce the dimensionality of the problem. Normally,
minimizing a function of n variables, leads to n equations and n unknowns. A
constraint could be used, by substitution, to replace the n variables with n − 1
variables. Instead, we add an unknown parameter, λ, and change the equation
to n + 1 equations with n + 1 unknowns, with the extra unknown being the
Lagrange multiplier λ. Often, it is rather easy to solve for x1 · · · xn. Then one is
left with the usually difficult problem of finding λ, often requiring the solution
of a transcendental equation.

Lagrange Multipliers
Let us try to formalize this. We consider a function of three independent variables
f(x, y, z) . For the function f to be an extreme we have

df = 0.

A necessary and sufficient condition is

∂f

∂x
= ∂f

∂y
= ∂f

∂z
= 0,

due to

df = ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz.

Independent Variables
In physical problems the variables x, y, z are often subject to constraints (in our
case q and the orthogonality constraint) so that they are no longer all independent.
It is possible at least in principle to use each constraint to eliminate one variable
and to proceed with a new and smaller set of independent varables.
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The use of so-called Lagrangian multipliers is an alternative technique when
the elimination of of variables is incovenient or undesirable. Assume that we
have an equation of constraint on the variables x, y, z

ϕ(x, y, z) = 0,

resulting in

dϕ = ∂ϕ

∂x
dx + ∂ϕ

∂y
dy + ∂ϕ

∂z
dz = 0.

More on Independent Variables
Now we cannot set anymore

∂f

∂x
= ∂f

∂y
= ∂f

∂z
= 0,

if df = 0 is wanted because there are now only two independent variables!
Assume x and y are the independent variables. Then dz is no longer arbitrary.

However, we can add to

df = ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz,

a multiplum of dϕ, viz. λdϕ, resulting in

df + λdϕ = (∂f

∂z
+ λ

∂ϕ

∂x
)dx + (∂f

∂y
+ λ

∂ϕ

∂y
)dy + (∂f

∂z
+ λ

∂ϕ

∂z
)dz = 0.

Choice of Multiplier
Our multiplier is chosen so that

∂f

∂z
+ λ

∂ϕ

∂z
= 0.

However, we took dx and dy as to be arbitrary and thus we must have

∂f

∂x
+ λ

∂ϕ

∂x
= 0,

and

∂f

∂y
+ λ

∂ϕ

∂y
= 0.

When all these equations are satisfied, df = 0. We have four unknowns,
x, y, z and λ. Actually we want only x, y, z, λ need not to be determined, it is
therefore often called Lagrange’s undetermined multiplier. If we have a set of
constraints ϕk we have the equations
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∂f

∂xi
+

∑
k

λk
∂ϕk

∂xi
= 0.

Example: brachiostone I
Consider a particle constrained to move along a path (like a bead moving without
friction on a wire) and you need to design a path from x = y = 0 to some final
point xf , yf . Assume there is a constant force in the x direction, Fx = mg.
Design the path so that the time the bead travels is a minimum.

The net time is

T =
∫

dℓ

v
=

∫ xf

0
dx

√
1 + y′2
√

2gx
= minimum.

Example: brachiostone II
Here we made use of the fact that dℓ =

√
dx2 + dy2 and that the velocity is

determined by KE = mv2/2 = mgx. The Euler equations can be applied if you
first define the function as

f(y, y′; x) =
√

1 + y′2
√

x
.

The equations are then

d

dx

∂f

∂y′ = 0.

Example: brachiostone III
The simplification ensued from f not having any dependence on y. This yields
the differential equation

y′

x1/2(1 + y′2)1/2 = (2a)−1/2, (7)

because ∂f/∂y′ must be a constant, which with some foresight we label
(2a)−1/2. One can now solve for y′,
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(y′)2 = 2ax(1 + y′2)

y′ =
√

x

2a − x
,

y(t) =
∫ x

0
dx′

√
x′dx′

√
2a − x′

=
∫ x

0
dx′ x′dx′

√
2ax′ − x′2

= 1
2

∫ x

0

(2x′ − 2a)dx′

(2ax′ − x′2)1/2 + a

∫ x

0

dx′
√

2ax′ − x′2

= −1
2

∫ 2ax−x2

0

du√
u

+ a

∫ x

0

dx′√
a2 − (x′ − a)2

= −
√

2ax − x2 + a cos−1(1 − x/a).

This turns out to be the equation for a cycloid or a brachiostone. If you rolled
a wheel of radius a down the y axis and followed a point on the rim, it would
trace out a cycloid. Here, the constant a must be chosen to match the boundary
condition, y2 = y(x2). You can see the textbook for more details, plus you get a
chance to work with cycloids in the exercises at the end of this chapter.

Maximizing a Function
As an example of using Lagrange multipliers for a standard optimization formula
we attempt to maximize the following function,

F (x1 · · · xn) = −
n∑

i=1
xi ln(xi),

with respect to the n variables xi. With no constraints, each xi would
maximize the function for

d

dxj

[
−

∑
i

xi ln(xi)
]

= 0

− ln(xj) − 1 = 0, xj = e−1.

Two Constraints
Now, we repeat the problem but with two constraints,∑

i

xi = 1 ,
∑

i

xiϵi = E.

Here, ϵi and E are fixed constants. We go forward by finding the extrema for

G(x1 · · · xn) = F − α
∑

i

xi − β
∑

i

ϵixi =
∑

i

{−xi ln(xi) − αxi − βϵixi} .
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Two Multipliers
There are two Lagrange multipliers, α and β, corresponding to the two constraints.
One then solves for the extrema

d

dxj
G = 0

= − ln(xj) − 1 − α − βϵj ,

xj = exp {−1 − α − βϵj} .

Lagrange multipliers
For any given α and β this provides a solution for constraining

∑
i xi and

∑
i ϵixi

to some values, just not the values of unity and E that you wish. One would then
have to search for the correct values by adjusting α and β until the constraint
are actually matched by solving a transcendental equation. Although this can
be complicated, it is certainly less expensive than searching over all N values
of xi. This particular example corresponds to maximizing the entropy for a
system, S = −

∑
i xi ln(xi), where xi is the probability of the system being in

a particular discrete level i that has energy ϵi. One wishes to maximize the
entropy subject to the constraints that the probabilities sum to unity and the
average energy has some given value. The result that xi ∼ e−βϵi demonstrates
the origin of the Boltzmann factor, with the inverse temperature β = 1/T .

Lagrange multipliers
Lagrange multipliers also assist with the Euler-Lagrange equation. If one breaks
an interval x1 < x < x2 into a large number n → ∞ points separated by dx, the
Euler-Lagrange equation involves finding the n values yi at each point so that∑

i dxf {yi, y′
i = (yi+1 − yi−1)/(2dx)} is maximized for some given function f .

If an additional auxiliary constraint is added, also some function of the n values
yi, one can use the method of Lagrange multipliers. In the constraint can also
be written as some function of C(yi, y′

i), then one simply adds a term λC(y, y′)
to the function f and uses the Euler-Lagrange equation to find the extrema of.

J =
∫ x2

x1

dx f {y(t), y′(t), x} − λC {y(t), y′(t), x} , (8)

the one difference being that

f {y(t), y′(t), x} → f {y(t), y′(t), x} − λC {y(t), y′(t), x} (9)

Example
Consider a chain of length L and mass per unit length κ that hangs from point
x = 0, y = 0 to point xf , yf . The shape must minimize the potential energy.
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Find general expressions for the shape in terms of three constants which must
be chosen to match y(0) = 0, y(xf ) = yf and the fixed length. Equivalently, one
finds the function y(t) that provides an extrema for the integral,

One must minimize

∫
dℓ κgy − λ

∫
dℓ =

∫ xf

0
dx

√
1 + y′2κgy − λ

∫ xf

0
dx

√
1 + y′2.

Here λ is the Lagrange multiplier associated with constraining the length of
the chain. The constrained length L appears nowhere in the expression. Instead,
one solves for form of the answer, then adjusts λ to give the correct length. For
the purposes of the Euler-Lagrange minimization one considers the function

f(y, y′; x) = κgy
√

1 + y′2 − λ
√

1 + y′2. (10)

Because λ is an unknown constant and because minimizing a function multi-
plied by a constant is the same as minimizing the function, we can equivlently
minimize the integral using the function

f̃(y, y′; x) = y
√

1 + y′2 − λ̃
√

1 + y′2, (11)

λ̃ ≡ λ

κg
.

The Euler-Lagrange equations then become

d

dx

{
y′√

1 + y′2
y − λ̃

y′√
1 + y′2

}
=

√
1 + y′2.

Here, we will guess at the form of the solution,

y′ = sinh[(x − x0)/a], y = a cosh[(x − x0)/a] + y0.

Plugging into the Euler-Lagange equations,

d

dx

{
(a cosh[(x − x0)/a] + y0) sinh[(x − x0)/a]

cosh[(x − x0)/a] − λ̃
sinh[(x − x0)/a]
cosh[(x − x0)/a]

}
= cosh[(x − x0)/a],

d

dx

{
(y0 − λ̃) tanh[(x − x0)/a]

}
= 0.

This solution works if y0 = λ̃. So the general form of the solution is

y = λ̃ + a cosh[(x − x0)/a].
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One must find λ̃, x0 and a to satisfy three conditions, y(x = 0) = 0,
y(x = xf ) = yf and that the length is L. For a hanging chain a is positive. A
solution with negative a would represent a maximum of the potential energy. A
remarkable property of the solution is that once you define the length and the
end-point positions y1 and y2, the solution does not depend on κ or g. Thus,
the shape of the chain would be the same if you took it to the moon. These
solutions are known as catenaries.

Lagrangians
Lagrangians represent a powerful method for solving problems that would be
nearly impossible by direct application of Newton’s third law, F = ma. The
method works well for problems where a system is well described by a few
generalized coordinates. A generalized coordinate might be the angle describing
the position of a pendulum. This one angle takes the place of using x and y to
describe the position of the pendulum, then applying a clumsy constraint.

The Lagrangian equations of motion can be derived from a principle of least
action, where the action S is defined as

S =
∫

dt L(q, q̇, t), (12)

where q is some coordinate that describes the orientation of a system and
the Lagrangian L is defined as

L = T − U, (13)

the difference of the kinetic and potential energies. Minimizing the action
through the Euler-Lagrange equations gives the Lagrangian equations of motion,

d

dt

∂L

∂q̇
= ∂L

∂q
. (14)

We begin with two simple examples, neither of which gains from the La-
grangian approach.

Consider a particle of mass m connected to a spring with stiffness k. Derive
the Lagrangian equations of motion.

L = 1
2mẋ2 − 1

2kx2,

d

dt

∂L

∂ẋ
= ∂L

∂x
,

mẍ = −kx.

Derive the Lagrangian equations of motion for a pendulum of mass m and
length ℓ.
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L = m

2 ℓ2θ̇2 − mgℓ(1 − cos θ),

d

dt

∂L

∂θ̇
= ∂L

∂θ
,

mℓ2θ̈ = −mgℓ sin θ,

θ̈ = −g

ℓ
sin θ,

θ̈ ≈ −g

ℓ
θ.

Proving Lagrange’s Equations of Motion from Newton’s Laws. La-
grange’s equations of motion can only be applied for the following conditions:

• The potential energy is a function of the generalized coordinates qi, but
not of q̇i.

• The relation between the original coordinates x, y, z · · · and the generalized
coordinates does not depend on q̇i, e.g. x(q, t) not x(q, q̇, t).

• Any constraints used to reduce the number of degrees of freedom are
functions of q, but not of q̇.

• The motion is not dissipative (no damping or friction).

Going forward with the proof, consider xi(q1, q2 · · · , t) and look at the l.h.s. of
Lagrange’s equations of motion.

∂T

∂q̇j
=

∑
i

∂T

∂ẋi

∂ẋi

∂q̇j
+

∑
i

∂T

∂xi

∂xi

∂q̇j
(15)

=
∑

i

mẋi
∂ẋi

∂q̇j

=
∑

i

mẋi

(δxi/δt)|fixed qj′ ̸=j

δqj/δt

=
∑

i

mẋi

δxi|fixed qj′ ̸=j

δqj

=
∑

i

mẋi
∂xi

∂qj
.

In the first line we used the fact that T does not depend on x. Continuing
with taking the derivative of U ,

− ∂U

∂q̇j
= −

∑
i

∂U

∂xi

∂xi

∂q̇j
= 0. (16)
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In the first line above we used the fact that U does not depend on ẋ then we
used the second condition that x does not depend on q̇. Adding the two pieces
together, then taking the derivative w.r.t. time,

d

dt

∂

∂q̇
(T − U) =

∑
i

mẍi
∂xi

∂qj
+

∑
i

mẋi
∂ẋi

∂qj
.

Now, we consider the r.h.s. of Lagrange’s equations. Because the kinetic
energy depends only on ẋ and not x, and because the potential depends on x
but not ẋ,

∂

∂qj
(T − U) =

∑
i

∂T

∂ẋi

∂ẋi

∂qj
−

∑
i

∂U

∂xi

∂xi

∂qj
(17)

=
∑

i

mẋi
∂ẋi

∂qj
−

∑
i

∂U

∂xi

∂xi

∂qj

Using the fact that mẍi = −(∂/∂xi)U , one can see that the bottom expres-
sions above are identical,

d

dt

∂

∂q̇i
(T − U) = ∂

∂qi
(T − U). (18)

Lagrangian Examples. Two examples are presented here. In the first, there
are two generalized coordinates, but the two equations of motion can be reduced
to one through conservation laws (angular momentum in this case). In the
second, there is a time-dependent constraint.

Consider a cone of half angle α standing on its tip at the origin. The surface
of the cone is defined as

r =
√

x2 + y2 = z tan α.

Find the equations of motion for a particle of mass m moving along the surface
under the influence of a constant gravitational force, −mgẑ. For generalized
coordinates use the azimuthal angle ϕ and r.

The kinetic energy is

T = 1
2mr2θ̇2 + 1

2m(ṙ2 + ż2)

= 1
2mr2θ̇2 + 1

2mṙ2 (
1 + cot2 α

)
= 1

2mr2θ̇2 + 1
2mṙ2 csc2 α.

The potential energy is
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U = mgr cot α,

so Lagrange’s equations give

d

dt

(
mr2θ̇

)
= 0,

d

dt

(
m csc2 αṙ

)
= mrθ̇2 − mg cot α,

r̈ = rθ̇2 sin2 α − g cos α sin α

The first equation is a statement of the conservation of angular momentum
with L = mr2θ̇, so the second equation can also be expressed as

r̈ = L2 sin2 α

m2r3 − g sin α cos α.

A bead slides along a wire bent in the shape of a parabola,

z = 1
2kr2, r2 = x2 + y2.

Also, the parabolic wire is rotating about the z axis with angular velocity ω.
Derive the equations of motion. Are there any stable configurations?

Using the fact that

ż = ṙ
∂z

∂r
= krṙ,

the kinetic and potential energies are

T = 1
2m

(
ṙ2 + ż2 + r2ω2)

= 1
2m

(
ṙ2 + (krṙ)2 + r2ω2)

,

U = mgkr2/2.

The equations of motion are then

d

dt

{
mṙ(1 + k2r2)

}
= −mgkr + mk2ṙ2r + mω2r,

r̈ = −gkr + ω2r − k2ṙ2r

1 + k2r2

For a stable configuration, there needs to be a solution with ṙ = 0 and r̈ = 0.
This can only happen at r = 0, and then for the acceleration to be inward for
small deviations of r one needs to have gk > ω2. If ω2 > gk the bead will move
outward indefinitely.
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Small Vibrations and Normal Modes
Two examples are provided for solving for normal modes. These are solutions with
multiple generalized coordinates, where the motion is that of simple harmonic
motion. However, the motion is only simple for a particular set of coordinates q1
and q2,

q1 = A cos(ω1t), (19)
q2 = B cos(ω2t),

while it is not necessarily simple in other coordinates. For example if x =
q1 + q2, and y = q1 − q2, the x and y motions will contain mixtures of multiple
frequencies. For many problems, or in the limit of small vibrations about a
minimum, there is some coordinate system where the motion is simple. These are
normal modes. Characterizing the normal modes involves finding the frequencies,
ωi, and the coordinate system where the motion is simple for each coordinate.
This involves finding the direction, or the linear combination of xi that form
the coordinates qi in which the motion is that of a single oscillator in each
coordinate.

For a first example, we consider a system of springs, where we write the
Lagrangian, then find the normal modes. For the second example, a double
pendulum is considered. In this case, one must first make a small angle expansion
before finding the modes. In principle, problems could have the same number of
normal modes a degrees of freedom. For example, a system of 7 particles moving
in three dimensions has 21 degrees of freedom. However, some of the degrees of
freedom do not have oscillatory behavior. For example, for a rigid body in free
space, the angles describing the orientation evolve, but do not oscillate. Also, the
center-of-mass coordinates of a system of particles isolated from outside particles
moves at constant velocity. One can also describe these as normal modes, but
acknowledge that their characteristic frequency is zero, as there are no restoring
forces.

Consider two springs, whose relaxed lengths are ℓ, connected to three masses
as depicted in the figure here. Describe the two normal modes of the motion.
We can write the Lagrangian as

L = m

2 ẋ2
1 + mẋ2

2 + m

2 ẋ2
3 − k

2 (x2 − x1 − ℓ)2 − k

2 (x3 − x2 − ℓ)2.

There are three coordinates, thus there are three equations of motion,

mẍ1 = −k(x1 − x2 + ℓ)
2mẍ2 = −k(x2 − x1 − ℓ) − k(x2 − x3 + ℓ)

= −k(2x2 − x1 − x3)
mẍ3 = −k(x3 − x2 + ℓ).
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This is a bit complicated because the center-of-mass motion does not easily
separate from the three equations. Instead, choose the following coordinates,

X = x1 + 2x2 + x3

4 ,

q1 = x1 − x2 + ℓ,

q3 = x3 − x2 − ℓ.

In these coordinates the potential energy only involves two coordinates,

U = k

2 (q2
1 + q2

3).

To express the kinetic energy express x1, x2 and x3 in terms of X, q1 and q3,

x1 = (3q1 − q3 − 4ℓ + 4X)/4,

x2 = (4X − q1 − q3)/4,

x3 = (3q3 − q1 + 4ℓ + 4X)/4.

The kinetic energy and Lagrangian are them

T = m

2
1
16(3q̇1 − q̇3 + 4Ẋ)2 + m

1
16(4Ẋ − q̇1 − q̇3)2 + m

2
1
16(3q̇3 − q̇1 + 4Ẋ)2

= 3m

8 (q̇2
1 + q̇2

3) − m

4 q̇1q̇3 + 2mẊ2,

L = 3m

8 (q̇2
1 + q̇2

3) − m

4 q̇1q̇3 + 2mẊ2 − k

2 q2
1 − k

2 q2
3 .

The three equations of motion are then,

3
4mq̈1 − 1

4mq̈3 = −kq1,

3
4mq̈3 − 1

4mq̈1 = −kq3,

4MẌ = 0.

The last equation simply states that the center-of-mass velocity is fixed. One
could obtain the same result by summing the equations of motion for x1, 2x2
and x3 above. The second two equations are more complicated. To solve them,
we assume a form

q1 = Aeiωt,

q3 = Beiωt,
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Because this is a linear equation, we can multiply the solution by a constant
and it will still be a solution. Thus, we can set B = 1, then solve for A, effectively
solving for A/B. Putting this guess into the equations of motion,

−3
4

A

B
ω2 + 1

4ω2 = −ω2
0

A

B
,

−3
4ω2 + 1

4
A

B
ω2 = −ω2

0 .

This is two equations and two unknowns, ω2 and A/B. Substituting for A/B
gives a quadratic equation,

ω4 − 3ω2
0ω2 + 2ω4

0 = 0,

ω2
0 ≡ k/m.

The two solutions are

(1) ω = ω0, A = −B,

(2) ω = ω0
√

2, A = B.

The first solution corresponds to the two outer masses moving in opposite di-
rections, in sync, with the middle mass fixed. The second solution has both outer
masses moving in the same direction, but with the center mass moving opposite.
These two solutions are referred to as normal modes, and are characterized
by their frequency and by the linear combinations of coordinates that oscillate
together. In general, the solution is a linear combination of normal modes,
which usually results in a chaotic looking motion. However, once the solution is
expressed in terms of the normal modes, each of which oscillates independently in
a simple manner, one can better understand the motion. Further, the frequencies
of these modes represent the natural resonant frequencies of the system. This is
important in the construction of many structures, such as bridges or vehicles.

Consider a double pendulum confined to the x − y plane, where y is vertical.
A mass m is connected to the ceiling with a massless string of length ℓ. A second
mass m hangs from the first mass with an identical massless string of the same
length. Using θ1 and θ2 to describe the orientations of the strings relative to
the vertical axis, find the Lagrangian and derive the equations of motion, both
for arbitrary angles and in the small-angle approximation. Finally, express the
equations of motion in the limit of small oscillations.

The kinetic and potential energies are:

T = 1
2mℓ2θ̇2

1 + 1
2m

{
(ℓθ̇1 cos θ1 + ℓθ̇2 cos θ2)2 + (ℓθ̇1 sin θ1 + ℓθ̇2 sin θ2)2}

= 1
2mℓ2 {

2θ̇2
1 + θ̇2

2 + 2θ̇1θ̇2 cos(θ1 − θ2)
}

,

U = mgℓ(1 − cos θ1) + mg [ℓ(1 − cos θ1) + ℓ(1 − cos θ2)]
= mgℓ(3 − 2 cos θ1 − cos θ2)
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Lagrange’s equations for θ1 lead to

mℓ2 d

dt

{
2θ̇1 + θ̇2 cos(θ1 − θ2)

}
= −mℓ2θ̇1θ̇2 sin(θ1 − θ2) − 2mgℓ sin θ1,

2θ̈1 + θ̈2 cos(θ1 − θ2) + θ̇2
2 sin(θ1 − θ2) = −2ω2

0 sin θ1,

ω2
0 ≡ g/ℓ,

and the equations for θ2 are

mℓ2 d

dt

{
θ̇2 + θ̇1 cos(θ1 − θ2)

}
= mℓ2θ̇1θ̇2 sin(θ1 − θ2) − mgℓ sin θ2,

θ̈2 + θ̈1 cos(θ1 − θ2) = −ω2
0 sin θ2.

For small oscillations, one can only consider terms linear in θ1 and θ2 or their
derivatives,

2θ̈1 + θ̈2 = −2ω2
0θ1, (20)

θ̈1 + θ̈2 = −ω2
0θ2.

To find the solutions, assume they are of the form θ1 = Aeiωt, θ2 = Beiωt.
Solve for ω and A/B, noting that B is arbitrary.

Plug in the desired form and find

eiωt(−2ω2A − ω2B) = eiωt(−2ω2
0A),

eiωt(−ω2A − ω2B) = eiωt(−ω2
0B).

We can treat B as arbitrary and set it to unity. When we find A, it is the
same as A/B for arbitrary B. This gives the equations

2ω2A + ω2 = 2ω2
0A,

ω2A + ω2 = ω2
0 .

This is two equations and two unknowns. Solving them leads to a quadratic
equation with solutions

A/B = ± 1√
2

,

ω2 = ω2
0

1 ± 1/
√

2
.

Again, these two solutions are the normal modes, and the general solution is
a sum of the two solutions, with two arbitrary constants. For the angles θ1 and
θ2 are:
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θ1 = A+√
2

eiω+t, θ2 = A+eiω+t,

θ1 = −A−√
2

eiω−t, θ2 = A−eiω−t,

ω± = ω0

√
1

1 ± 1/
√

2
.

One can also express the solution in vector notation, with the vectors having
arbitrary amplitudes A+ and A−,

θ+ =
( 1√

2
1

)
A+eiω+t,

θ− =
( −1√

2
1

)
A−eiω−t.

Here, the upper/lower components of the vector describe θ1/θ2 respectively.
These problems can be treated as linear algebra exercises. Linear algebra

is not used in this course, but nonetheless we describe how this works for the
curious student. In the limit of small vibrations, the equations of motion can be
expressed in the form,

Mq̈ = −Kq,

a form that looks like the spring equation. However, q is an n−dimensional
vector and M and k are n × n matrices. In the double pendulum example, the
dimensionality is 2 and the q refers to the θ1 and θ2, and the matrices for M
and K can be read off (add ref).

M =
(

2 1
1 1

)
, K =

(
2ω2

0 0
0 ω2

0

)
.

Multiplying both sides of the equation by the inverse matrix M−1,

q̈ = −
(
M−1K

)
q.

Here,

M−1 =
(

1 −1
−1 2

)
,

M−1K =
(

2 −1
−2 2

)
ω2

0 .
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One can find a transformation, basically a rotation, that transforms to a frame
where M−1K is diagonal. In this coordinate system the diagonal components of
M−1K represent the squared frequencies of the normal modes,

M−1K → −
(

ω2
+ 0
0 ω2

−

)
,

and are known as “eigen” frequencies. The corresponding unit vectors,(
1
0

)
and

(
0
1

)
in the new coordinate system,

can be rotated back into the original frame, and become the solutions for
the normal modes. These are then called “eigenvectors”, which are the same as
the normal modes. Finding the eigenfrequencies is performed by realizing that
the determinant of a matrix is unchanged by the rotation between coordinate
systems. Writing the equations of motion as an eigenvalue problem,

[A − λi⊮] ui = 0, A ≡ M−1K, λi ≡ ω2
i . (21)

In the coordinate system where M−1K is diagonal, and the forms for ui are
simple this requires that in that system, the diagonal elements of M−1K are the
eigenvalues, ω2

i . For each ω2
i , the determinant |A − λi⊮| must vanish. This is

then true in any coordinate system,

det [A − λ⊮] = 0, (22)

which for a 2 × 2 matrix becomes

∣∣∣∣ A11 − λ A12
A21 A22 − λ

∣∣∣∣ = 0, (23)

A11A22 − λA11 − λA22 + λ2 − A21A12 = 0. (24)

One can solve a quadratic equation for λ, which gives two eigenvalues cor-
responding to ω2

+ and ω2
− found above. Choosing one of the eigenvalues, one

can insert one of the eigenvalues λi into the eigenvalue problem and solve for ui,
then choose the other eigenvalue and solve for the other corresponding vector.

If this were a 3-dimensional set of equations, the determinant would include
terms like λ3 and would become a cubic equation with three eigenvalues. One
would then solve for three eigenvectors. If one has a system with dimensionality
n > 2, one usually resorts to solving the problem numerically due to the messiness
of the algebra. The main programming languages all have packages which readily
diagonalize matrices and find eigenvectors and eigenvalues.

18



Conservation Laws
Energy is conserved only when the Lagrangian has no explicit dependence on
time, i.e. L(q, q̇), not L(q, q̇, t). To show this, we first define the Hamiltonian,

H =
∑

i

(
q̇i

∂L

∂q̇i

)
− L. (25)

After showing that H is conserved, i.e. (d/dt)H = 0, we then show that H
can be identified with the total energy, H = T + V .

One can see that H is conserved by applying first using the chain rule for
(d/dt)H, then applying Lagrange’s equations,

d

dt
H =

∑
i

{
q̈i

∂L

∂q̇i
+ q̇i

d

dt

(
∂L

∂q̇i

)
− ∂L

∂q̇i
q̈i − ∂L

∂qi
q̇i

}
(26)

=
∑

i

{
q̈i

∂L

∂q̇i
+ q̇i

∂L

∂qi
− ∂L

∂q̇i
q̈i − ∂L

∂qi
q̇i

}
= 0.

These steps assumed that L had no explicit time dependence, i.e. L is a
function of q and q̇, but not of t.

Next, we show that L can be identified with the energy. Because V does not
depend on q̇,

H =
∑

i

∂T

∂q̇i
q̇i − T + V. (27)

If the kinetic energy has a purely quadratic form in terms of q̇,

T =
∑

ij

Aij(q)q̇iq̇j , (28)

the Hamiltonian becomes

H =
∑

ij

2Aij(q)q̇iq̇j −
∑

ij

Aij(q)q̇iq̇j + V (29)

= T + V.

The proof that H equals the energy hinged on the fact that the kinetic energy
was quadratic in q̇. This can be attributed to time-reversal symmetry. Because
the Cartesian coordinates xi do not depend on q̇i or on time, ẋi = (∂xi/∂qj)q̇j .
Thus, the kinetic energy, T = mẋ2

i /2, should be proportional to two powers of q̇,
which validates the assumption above.

Here, energy conservation is predicated on the Lagrangian not having an
explicit time dependence. Without an explicit time dependence the equations
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of motion are unchanged if one translates a fixed amount in time because the
physics does not depend on when the clock starts. In contrast, the absolute time
becomes relevant if there is an explicit time dependence. In fact, conservation
laws can usually be associated with symmetries. In this case the translation
symmetry in time leads to energy conservation.

For another example of how symmetry leads to conservation laws, consider a
Lagrangian for a particle of mass m moving in a two-dimensional plane where
the generalized coordinates are the radius r and the angle θ. The kinetic energy
would be

T = 1
2m

{
ṙ2 + r2θ̇2}

, (30)

and if the potential energy V (r) depends only on the radius r and not on
the angle, Lagrange’s equations become

d

dt
(mṙ) = −∂V

∂r
+ mθ̇2r, (31)

d

dt
(mr2θ̇) = 0.

The second equation implies that mr2θ̇ is a constant. Indeed, it is the
angular momentum which is conserved for a radial force. Here, the conservation
of angular momentum is associated with the independence of the physics to
changes in θ, or in other words, rotational invariance. Once one knows the fact
that L = mr2θ̇ is conserved, it can be inserted into the equations of motion for
ṙ,

mr̈ = −∂V

∂r
+ L2

mr3 . (32)

This is related to Emmy Noether’s theorem
Simply stated, if the Lagrangian L is independent of qi, one can see that the

quantity ∂L/∂q̇i is conserved,

d

dt

∂L

∂q̇i
= 0. (33)

Another easy example is in Cartesian coordinates where the potential depends
only on x and y but not on z. In that case, there is a translational symmetry.
From the last equation, this translates into conservation of the momentum in
the z direction.

Consider a pair of particles of mass m1 and m2 where the potential is of the
form

U(r1, r2) = Va(|m1r1 + m2r2|/(m1 + m2)) + Vb(|r1 − r2|).

Using symmetry arguments alone, are there any conserved components of
the momentum? or the angular momentum??
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There is no translational invariance, hence there are no conserved components
of the momentum. However, there is rotational invariance about any axis that
goes through the origin. Hence, there is angular momentum conservation in all
three directions. Symmetry arguments are great ways to recognize the existence
of conserved quantities, but actually expressing them in terms of coordinates
can be tricky. For instance, you may need to write the Lagrangian in terms of
angles.
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