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Aims and Overarching Motivation
Monday April 10.

• Lagrangian formalism, top down approach first and derivation of the
Euler-Lagrange equations

• Principle of Least Action, watch Feynman Lecture.

• Video of lecture

• Handwritten notes

Reading suggestion this week: Taylor sections 6.1-6.4

Wednesday April 12.

• Euler-Lagrange equations and the Lagrangian with examples

• Principle of Least Action, watch Feynman Lecture.

• Video of lecture TBA

• Handwritten notes

Reading suggestion: Taylor sections 6.1-6.4
See also Variational Calculus

Friday April 14. Discussion and work on second midterm.

http://mhjgit.github.io/info/doc/web/
https://www.feynmanlectures.caltech.edu/II_19.html
https://youtu.be/Sfkdnq9JKB8
https://github.com/mhjensen/Physics321/blob/master/doc/HandWrittenNotes/Spring2023/NotesApril10.pdf
https://www.feynmanlectures.caltech.edu/II_19.html
https://youtu.be/vNKn1HyC9kw
https://github.com/mhjensen/Physics321/blob/master/doc/HandWrittenNotes/Spring2023/NotesApril12.pdf
https://en.wikipedia.org/wiki/Calculus_of_variations


Variational Calculus
The calculus of variations involves problems where the quantity to be minimized
or maximized is an integral.

The usual minimization problem one faces involves taking a function L(x),
then finding the single value x for which L is either a maximum or minimum.
In multivariate calculus one also learns to solve problems where you minimize
for multiple variables, L(x1, x2, · · · xn), and finding the points (x1 · · · yn) in an
n-dimensional space that maximize or minimize the function. Here, we consider
what seems to be a much more ambitious problem. Imagine you have a function
L(x(t), ẋ(t), t), and you wish to find the extrema for an infinite number of values
of x, i.e. x at each point t. The function L will not only depend on x at each
point t, but also on the slope at each point, plus an additional dependence on
t. Note we are NOT finding an optimum value of t, we are finding the set of
optimum values of x at each point t, or equivalently, finding the function x(t).

Variational Calculus, introducing the action
One treats the function x(t) as being unknown while minimizing the action

S =
∫ t2

t1

dt L(x(t), ẋ(t), t).

Thus, we are minimizing S with respect to an infinite number of values of x(ti)
at points ti. As an additional criteria, we will assume that x(t1) and x(t2) are
fixed, and that that we will only consider variations of x between the boundaries.
The dependence on the derivative, ẋ = dx/dt, is crucial because otherwise the
solution would involve simply finding the one value of x that minimized L, and
x(t) would equal a constant if there were no explicit t dependence. Furthermore,
x wouldn’t need to be continuous at the boundary.

Variational Calculus, general Action
In the general case we have an integral of the type

S[q] =
∫ t2

t1

L(q(t), q̇(t), t)dt,

where S is the quantity which is sought minimized or maximized. The
problem is that although L is a function of the general variables q(t), q̇(t), t (note
our change of variables), the exact dependence of q on t is not known. This
means again that even though the integral has fixed limits t1 and t2, the path of
integration is not known. In our case the unknown quantities are the positions
and general velocities of a given number of objects and we wish to choose an
integration path which makes the functional S[q] stationary. This means that
we want to find minima, or maxima or saddle points. In physics we search
normally for minima. Our task is therefore to find the minimum of S[q] so that
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its variation δS is zero subject to specific constraints. The constraints can be
treated via the technique of Lagrangian multipliers as we will see below.

Variational Calculus, Optimal Path
We assume the existence of an optimum path, that is a path for which S[q] is
stationary. There are infinitely many such paths. The difference between two
paths δq is called the variation of q.

We call the variation η(t) and it is scaled by a factor α. The function η(t) is
arbitrary except for

η(t1) = η(t2) = 0,

and we assume that we can model the change in q as

q(t, α) = q(t) + αη(t),

and

δq = q(t, α) − q(t, 0) = αη(t).

Variational Calculus, Condition for an Extreme Value
We choose q(t, α = 0) as the unkonwn path that will minimize S. The value
q(t, α ̸= 0) describes a neighbouring path.

We have

S[q(α)] =
∫ t2

t1

L(q(t, α), q̇(t, α), t)dt.

The condition for an extreme of

S[q(α)] =
∫ t2

t1

L(q(t, α), q̇(t, α), t)dt,

is [
∂S[q(α)]

∂t

]
α=0

= 0.

Variational Calculus. α Dependence
The α dependence is contained in q(t, α) and q̇(t, α) meaning that[

∂E[q(α)]
∂α

]
=

∫ t2

t1

(
∂↕
∂q

∂q

∂α
+ ∂L

∂q̇

∂q̇

∂α

)
dt.

We have defined

3



∂q(x, α)
∂α

= η(x)

and thereby

∂q̇(t, α)
∂α

= d(η(t))
dt

.

Integrating by Parts
Using

∂q(t, α)
∂α

= η(t),

and

∂q̇(t, α)
∂α

= d(η(t))
dt

,

in the integral gives[
∂S[q(α)]

∂α

]
=

∫ t2

t1

(
∂L
∂q

η(t) + ∂L
∂q̇

d(η(t))
dt

)
dt.

Integrating the second term by parts∫ t2

t1

∂L
∂q̇

d(η(t))
dt

dt = η(t)∂L
∂q̇

|t2
t1

−
∫ b

a

η(t) d

dx

∂L
∂q̇

dt,

and since the first term dissappears due to η(a) = η(b) = 0, we obtain[
∂S[q(α)]

∂α

]
=

∫ t2

t1

(
∂L
∂q

− d

dx

∂L
∂q̇

)
η(t)dt = 0.

Euler-Lagrange Equations
The latter can be written as[

∂S[q(α)]
∂α

]
α=0

=
∫ t2

t1

(
∂L
∂q

− d

dx

∂L
∂q̇

)
δq(t)dt = δS = 0.

The condition for a stationary value is thus a partial differential equation

∂L
∂q

− d

dx

∂L
∂q̇

= 0,

known as the Euler-Lagrange equation.
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Why is the Lagrangian defined as the difference between
kinetic and potential energy?
To understand this let us develop some intuition before the math by looking at
what we did in the second midterm. There we studied energy conservation.

# let's start by importing useful packages we are familiar with
import numpy as np
from math import *
import matplotlib.pyplot as plt
import seaborn as sns
import math

#Velocity-Verlet Method
DeltaT = 0.001
#set up arrays
tfinal = 10 # in years
n = ceil(tfinal/DeltaT)
# set up arrays for time t, velocity v, and position r
t = np.zeros(n)
v = np.zeros((n,2))
r = np.zeros((n,2))
# Initial conditions as compact 2-dimensional arrays. Here: circular orbit conditions.
r0 = np.array([1.0,0.0])
v0 = np.array([0.0,5.0])
r[0] = r0
v[0] = v0
Fourpi2 = 4*pi*pi
# Start integrating using the Velocity-Verlet method
for i in range(n-1):

# Set up the accelerationn
rabs = sqrt(sum(r[i]*r[i]))
a = -Fourpi2*r[i]/(rabs**3)
# update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i] + ((DeltaT**2)/2)*(a)
rabs = sqrt(sum(r[i+1]*r[i+1]))
anew = -4*(pi**2)*r[i+1]/(rabs**3)
v[i+1] = v[i] + DeltaT*(0.5)*(a + anew)
t[i+1] = t[i] + DeltaT

sns.set()
plt.plot(r[:,0], r[:,1])

# We check that the total energy is conserved. For a circular orbit, potential and kinetic energy do not change since the radius is a constant.

# Note that we have set the mass of the Earth = 1
def kinetic_energy(v):

KE = []
step = len(t)
for i in range(step):

KE.append(0)
KE[i] += 0.5 *np.sum(v[i]*v[i])

return np.array(KE)

# Note that G x Mass_sun = 4*pi*pi and the mass of the Earth = 1
# Note also that if you change the exponent in the force you need also to change the potential energy!
def pot():

Pot = []
step = len(t)
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for i in range(step):
Pot.append(0)
Pot[i] += - 4*pi*pi/ sqrt(np.sum(r[i]*r[i]))

return np.array(Pot)

fig, ax = plt.subplots(1,1,figsize=(12,6))
ax.plot(t,kinetic_energy(v)+pot(),label='Total')
ax.plot(t,kinetic_energy(v),label='Kinetic')
ax.plot(t,pot(),label='Potential')
ax.set_title('Energy vs time')
ax.set_xlabel('t [yr]')
ax.legend()
ax.set_ylabel(r'E')

The energy is conserved and does not say much about the variations in
position and velocity as functions of time.

What if we plot the difference between kinetic and potential
energy instead?

fig, ax = plt.subplots(1,1,figsize=(12,6))
ax.plot(t,kinetic_energy(v)-pot(),label='L=K-V')
ax.plot(t,kinetic_energy(v),label='Kinetic')
ax.plot(t,pot(),label='Potential')
ax.set_title('Energy vs time')
ax.set_xlabel('t [yr]')
ax.legend()
ax.set_ylabel(r'E')
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