
PHY321: Two-body problems,
gravitational forces and two-body

scattering

Morten Hjorth-Jensen1,2

1Department of Physics and Astronomy and Facility for Rare Ion Beams (FRIB), Michigan State University, USA
2Department of Physics, University of Oslo, Norway

Apr 2, 2021

Aims and Overarching Motivation
Monday.

1. Physical interpretation of various orbit types and summary gravitational
forces, examples on whiteboard and handwritten notes

2. Start discussion two-body scattering

Reading suggestion: Taylor chapter 8 and sections 14.1-14.2 and Lecture
notes

Wednesday.

1. Two-body scattering

Reading suggestion: Taylor and sections 14.3-14.6

Friday.

1. Two-body scattering

Reading suggestion: Taylor and sections 14.3-14.6

Code example with gravitional force. The code example here is meant to
illustrate how we can make a plot of the final orbit. We solve the equations in
polar coordinates (the example here uses the minimum of the potential as initial
value) and then we transform back to cartesian coordinates and plot x versus y.
We see that we get a perfect circle when we place ourselves at the minimum of
the potential energy, as expected.

© 1999-2021, "Morten Hjorth-Jensen":"http://mhjgit.github.io/info/doc/web/". Released
under CC Attribution-NonCommercial 4.0 license

http://mhjgit.github.io/info/doc/web/

Plotting the potential first
The code here plots the effective potential

The following code plots this effective potential for a simple choice of pa-
rameters, with a standard gravitational potential −α/r. Here we have chosen
L = m = α = 1.

Common imports
import numpy as np
from math import *
import matplotlib.pyplot as plt

Deltax = 0.01
#set up arrays
xinitial = 0.3
xfinal = 5.0
alpha = 1.0 # spring constant
m = 1.0 # mass, you can change these
AngMom = 1.0 # The angular momentum
n = ceil((xfinal-xinitial)/Deltax)
x = np.zeros(n)
for i in range(n):

x[i] = xinitial+i*Deltax
V = np.zeros(n)
V = -alpha/x+0.5*AngMom*AngMom/(m*x*x)
Plot potential
fig, ax = plt.subplots()
ax.set_xlabel('r[m]')
ax.set_ylabel('V[J]')
ax.plot(x, V)
fig.tight_layout()
plt.show()

Solving the differential equations, Radial Degrees of Free-
dom only
This code and the subsequent one are relevant for homework 9 (the numerical
exercise).

Simple Gravitational Force -alpha/r
Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt
import os

Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

2

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

DeltaT = 0.01
#set up arrays
tfinal = 8.0
n = ceil(tfinal/DeltaT)
set up arrays for t, v and r
t = np.zeros(n)
v = np.zeros(n)
r = np.zeros(n)
phi = np.zeros(n)
x = np.zeros(n)
y = np.zeros(n)
Constants of the model, setting all variables to one for simplicity
alpha = 1.0
AngMom = 1.0 # The angular momentum
m = 1.0 # scale mass to one
c1 = AngMom*AngMom/(m*m)
c2 = AngMom*AngMom/m
rmin = (AngMom*AngMom/m/alpha)
Initial conditions, place yourself at the potential min
r0 = rmin
v0 = 0.0 # starts at rest
r[0] = r0
v[0] = v0
phi[0] = 0.0
Start integrating using the Velocity-Verlet method
for i in range(n-1):

Set up acceleration
a = -alpha/(r[i]**2)+c1/(r[i]**3)
update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a
anew = -alpha/(r[i+1]**2)+c1/(r[i+1]**3)
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
t[i+1] = t[i] + DeltaT
phi[i+1] = t[i+1]*c2/(r0**2)

Find cartesian coordinates for easy plot
x = r*np.cos(phi)
y = r*np.sin(phi)
fig, ax = plt.subplots(3,1)
ax[0].set_xlabel('time')
ax[0].set_ylabel('radius')
ax[0].plot(t,r)
ax[1].set_xlabel('time')
ax[1].set_ylabel('Angle $\cos{\phi}$')
ax[1].plot(t,np.cos(phi))
ax[2].set_ylabel('y')
ax[2].set_xlabel('x')
ax[2].plot(x,y)

3

save_fig("Phasespace")
plt.show()

Changing initial conditions
Try to change the initial value for r and see what kind of orbits you get. In
order to test different energies, it can be useful to look at the plot of the effective
potential discussed above.

However, for orbits different from a circle the above code would need modifi-
cations in order to allow us to display say an ellipse. For the latter, it is much
easier to run our code in cartesian coordinates, as done here. In this code we
test also energy conservation and see that it is conserved to numerical precision.
The code here is a simple extension of the code we developed for homework 4.

Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt

DeltaT = 0.01
#set up arrays
tfinal = 10.0
n = ceil(tfinal/DeltaT)
set up arrays
t = np.zeros(n)
v = np.zeros((n,2))
r = np.zeros((n,2))
E = np.zeros(n)
Constants of the model
m = 1.0 # mass, you can change these
alpha = 1.0
Initial conditions as compact 2-dimensional arrays
x0 = 0.5; y0= 0.
r0 = np.array([x0,y0])
v0 = np.array([0.0,1.0])
r[0] = r0
v[0] = v0
rabs = sqrt(sum(r[0]*r[0]))
E[0] = 0.5*m*(v[0,0]**2+v[0,1]**2)-alpha/rabs
Start integrating using the Velocity-Verlet method
for i in range(n-1):

Set up the acceleration
rabs = sqrt(sum(r[i]*r[i]))
a = -alpha*r[i]/(rabs**3)
update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a
rabs = sqrt(sum(r[i+1]*r[i+1]))
anew = -alpha*r[i+1]/(rabs**3)
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
E[i+1] = 0.5*m*(v[i+1,0]**2+v[i+1,1]**2)-alpha/rabs
t[i+1] = t[i] + DeltaT

Plot position as function of time
fig, ax = plt.subplots(3,1)
ax[0].set_ylabel('y')
ax[0].set_xlabel('x')

4

ax[0].plot(r[:,0],r[:,1])
ax[1].set_xlabel('time')
ax[1].set_ylabel('y position')
ax[1].plot(t,r[:,0])
ax[2].set_xlabel('time')
ax[2].set_ylabel('y position')
ax[2].plot(t,r[:,1])

fig.tight_layout()
save_fig("2DimGravity")
plt.show()
print(E)

Different Potential
Let us now try another potential, given by

V (r) = βr,

where β is constant we assume is larger than zero. This type of potential has
played an importan role in modeling confinement of quarks in non-relativistic
models for the interactions among quarks, see for example https://journals.
aps.org/prl/pdf/10.1103/PhysRevLett.44.1369

Adding the angular momentum part, we obtain the effective potential

Veff(r) = βr + L2

2µr2 ,

and taking the derivative with respect to r, we get the radial force

Fr = −dVeff(r)
dr

= −β + L2

µr3 .

It gives us in turn a radial acceleration ar

ar = −β
µ

+ L2

µ2r3 .

This is the equation we need to include in our code. I have not been able to
find out if there is an analytical solution to the above equation. If you can find
one, there is a reward of 50 USD to the first one who finds. Numerically life is
very easy, we just define a new acceleration, as seen below.

Plotting the Effective Potential
First however, we plot the effective potential in order to get a feeling of what we
may expect.

The following code plots this effective potential for a simple choice of param-
eters, with a potential βr. Here we have chosen L = m = β = 1.

5

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.44.1369
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.44.1369

Common imports
import numpy as np
from math import *
import matplotlib.pyplot as plt

Deltax = 0.01
#set up arrays
xinitial = 0.3
xfinal = 5.0
beta = 1.0 # spring constant
m = 1.0 # mass, you can change these
AngMom = 1.0 # The angular momentum
n = ceil((xfinal-xinitial)/Deltax)
x = np.zeros(n)
for i in range(n):

x[i] = xinitial+i*Deltax
V = np.zeros(n)
V = beta*x+0.5*AngMom*AngMom/(m*x*x)
Plot potential
fig, ax = plt.subplots()
ax.set_xlabel('r[m]')
ax.set_ylabel('V[J]')
ax.plot(x, V)
fig.tight_layout()
plt.show()

Finding the Minimum for Circular Orbits
We take now the derivative of the effective potential in order to find its minimum,
that is

dVeff(r)
dr

= β − L2

µr3 = 0,

which gives us rmin

rmin =
[
L2

βµ

]1/3

.

With the above choice of parameters this gives rmin = 1.
In the code here we solve the equations of motion and find the time-evolution

of the radius r.

Numerical Studies
DeltaT = 0.01
#set up arrays
tfinal = 8.0
n = ceil(tfinal/DeltaT)
set up arrays for t, v and r
t = np.zeros(n)
v = np.zeros(n)
r = np.zeros(n)
Constants of the model, setting all variables to one for simplicity
beta = 1.0
AngMom = 1.0 # The angular momentum
m = 1.0 # scale mass to one

6

c1 = AngMom*AngMom/(m*m)
c2 = AngMom*AngMom/m
rmin = (AngMom*AngMom/m/beta)**(1./3.)
Initial conditions, place yourself at the potential min
r0 = rmin
v0 = 0.0 # starts at rest
r[0] = r0
v[0] = v0
Start integrating using the Velocity-Verlet method
for i in range(n-1):

Set up acceleration
a = -beta+c1/(r[i]**3)
update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a
anew = -beta+c1/(r[i+1]**3)
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
t[i+1] = t[i] + DeltaT

#plotting
plt.xlabel('time')
plt.ylabel('radius')
plt.plot(t,r)
save_fig("LinearPotential")
plt.show()

We see that if we run with the initial condition corresponding to a circular
orbit, our radius stays constant as function of time.

Scattering and Cross Sections
Scattering experiments don’t measure entire trajectories. For elastic collisions,
they measure the distribution of final scattering angles at best. Most experiments
use targets thin enough so that the number of scatterings is typically zero or one.
The cross section, σ, describes the cross-sectional area for particles to scatter
with an individual target atom or nucleus. Cross section measurements form
the basis for MANY fields of physics. BThe cross section, and the differential
cross section, encapsulates everything measurable for a collision where all that
is measured is the final state, e.g. the outgoing particle had momentum pf . y
studying cross sections, one can infer information about the potential interaction
between the two particles. Inferring, or constraining, the potential from the
cross section is a classic inverse problem. Collisions are either elastic or inelastic.
Elastic collisions are those for which the two bodies are in the same internal
state before and after the collision. If the collision excites one of the participants
into a higher state, or transforms the particles into different species, or creates
additional particles, the collision is inelastic. Here, we consider only elastic
collisions.

Scattering: Coulomb forces
For Coulomb forces, the cross section is infinite because the range of the Coulomb
force is infinite, but for interactions such as the strong interaction in nuclear or
particle physics, there is no long-range force and cross-sections are finite. Even
for Coulomb forces, the part of the cross section that corresponds to a specific

7

scattering angle, dσ/dΩ, which is a function of the scattering angle θs is still
finite.

If a particle travels through a thin target, the chance the particle scatters is
Pscatt = σdN/dA, where dN/dA is the number of scattering centers per area the
particle encounters. If the density of the target is ρ particles per volume, and if
the thickness of the target is t, the areal density (number of target scatterers per
area) is dN/dA = ρt. Because one wishes to quantify the collisions independently
of the target, experimentalists measure scattering probabilities, then divide by
the areal density to obtain cross-sections,

σ = Pscatt

dN/dA
. (1)

Scattering, more details
Instead of merely stating that a particle collided, one can measure the probability
the particle scattered by a given angle. The scattering angle θs is defined so
that at zero the particle is unscattered and at θs = π the particle is scattered
directly backward. Scattering angles are often described in the center-of-mass
frame, but that is a detail we will neglect for this first discussion, where we will
consider the scattering of particles moving classically under the influence of fixed
potentials U(r). Because the distribution of scattering angles can be measured,
one expresses the differential cross section,

d2σ

d cos θs dφ
. (2)

Usually, the literature expresses differential cross sections as

dσ/dΩ = dσ

d cos θdφ = 1
2π

dσ

d cos θ , (3)

where the last equivalency is true when the scattering does not depend on
the azimuthal angle φ, as is the case for spherically symmetric potentials.

The differential solid angle dΩ can be thought of as the area subtended by a
measurement, dAd, divided by r2, where r is the distance to the detector,

dAd = r2dΩ. (4)

With this definition dσ/dΩ is independent of the distance from which one
places the detector, or the size of the detector (as long as it is small).

Differential scattering cross sections
Differential scattering cross sections are calculated by assuming a random distri-
bution of impact parameters b. These represent the distance in the xy plane for
particles moving in the z direction relative to the scattering center. An impact

8

parameter b = 0 refers to being aimed directly at the target’s center. The impact
parameter describes the transverse distance from the z = 0 axis for the trajectory
when it is still far away from the scattering center and has not yet passed it.
The differential cross section can be expressed in terms of the impact parameter,

dσ = 2πbdb, (5)

which is the area of a thin ring of radius b and thickness db. In classical
physics, one can calculate the trajectory given the incoming kinetic energy E
and the impact parameter if one knows the mass and potential.

More on Differential Cross Sections
From the trajectory, one then finds the scattering angle θs(b). The differential
cross section is then

dσ

dΩ = 1
2π

dσ

d cos θs
= b

db

d cos θs
= b

(d/db) cos θs(b)
. (6)

Typically, one would calculate cos θs and (d/db) cos θs as functions of b. This
is sufficient to plot the differential cross section as a function of θs.

The total cross section is

σtot =
∫
dΩ dσ

dΩ = 2π
∫
d cos θs

dσ

dΩ . (7)

Even if the total cross section is infinite, e.g. Coulomb forces, one can still
have a finite differential cross section as we will see later on.

Rutherford Scattering
This refers to the calculation of dσ/dΩ due to an inverse square force, F12 =
±α/r2 for repulsive/attractive interaction. Rutherford compared the scattering
of α particles (4He nuclei) off of a nucleus and found the scattering angle at
which the formula began to fail. This corresponded to the impact parameter for
which the trajectories would strike the nucleus. This provided the first measure
of the size of the atomic nucleus. At the time, the distribution of the positive
charge (the protons) was considered to be just as spread out amongst the atomic
volume as the electrons. After Rutherford’s experiment, it was clear that the
radius of the nucleus tended to be roughly 4 orders of magnitude smaller than
that of the atom, which is less than the size of a football relative to Spartan
Stadium.

Rutherford Scattering, more details
In order to calculate differential cross section, we must find how the impact
parameter is related to the scattering angle. This requires analysis of the
trajectory. We consider our previous expression for the trajectory where we

9

derived the elliptic form for the trajectory, For that case we considered an
attractive force with the particle’s energy being negative, i.e. it was bound.
However, the same form will work for positive energy, and repulsive forces can be
considered by simple flipping the sign of α. For positive energies, the trajectories
will be hyperbolas, rather than ellipses, with the asymptotes of the trajectories
representing the directions of the incoming and outgoing tracks.

Rutherford Scattering, final trajectories
We have

r = 1
mα
L2 +A cos θ . (8)

Once A is large enough, which will happen when the energy is positive, the
denominator will become negative for a range of θ. This is because the scattered
particle will never reach certain angles. The asymptotic angles θ′ are those for
which the denominator goes to zero,

cos θ′ = − mα

AL2 . (9)

Rutherford Scattering, Closest Approach
The trajectory’s point of closest approach is at θ = 0 and the two angles θ′,
which have this value of cos θ′, are the angles of the incoming and outgoing
particles. From Fig (to come), one can see that the scattering angle θs is given
by,

2θ′ − π = θs, θ′ = π

2 + θs
2 , (10)

sin(θs/2) = − cos θ′

= mα

AL2 .

Now that we have θs in terms of m,α,L and A, we wish to re-express L and
A in terms of the impact parameter b and the energy E. This will set us up to
calculate the differential cross section, which requires knowing db/dθs. It is easy
to write the angular momentum as

L2 = p2
0b

2 = 2mEb2. (11)

Rutherford Scattering, getting there
Finding A is more complicated. To accomplish this we realize that the point of
closest approach occurs at θ = 0, so from Eq. (8)

10

1
rmin

= mα

L2 +A, (12)

A = 1
rmin

− mα

L2 .

Next, rmin can be found in terms of the energy because at the point of closest
approach the kinetic energy is due purely to the motion perpendicular to r̂ and

E = − α

rmin
+ L2

2mr2
min

. (13)

Rutherford Scattering, More Manipulations
One can solve the quadratic equation for 1/rmin,

1
rmin

= mα

L2 +
√

(mα/L2)2 + 2mE/L2. (14)

We can plug the expression for rmin into the expression for A, Eq. (12),

A =
√

(mα/L2)2 + 2mE/L2 =
√

(α2/(4E2b4) + 1/b2 (15)

Rutherford Scattering, final expression
Finally, we insert the expression for A into that for the scattering angle, Eq.
(10),

sin(θs/2) = mα

AL2 (16)

= a√
a2 + b2

, a ≡ α

2E

Rutherford Scattering, the Differential Cross Section
The differential cross section can now be found by differentiating the expression
for θs with b,

11

1
2 cos(θs/2)dθs = ab db

(a2 + b2)3/2 = bdb

a2 sin3(θs/2), (17)

dσ = 2πbdb = πa2

sin3(θs/2)
cos(θs/2)dθs

= πa2

2 sin4(θs/2)
sin θsdθs

dσ

d cos θs
= πa2

2 sin4(θs/2)
,

dσ

dΩ = a2

4 sin4(θs/2)
.

where a = α/2E. This the Rutherford formula for the differential cross
section. It diverges as θs → 0 because scatterings with arbitrarily large impact
parameters still scatter to arbitrarily small scattering angles. The expression for
dσ/dΩ is the same whether the interaction is positive or negative.

Rutherford Scattering, Example
Consider a particle of mass m and charge z with kinetic energy E (Let it be the
center-of-mass energy) incident on a heavy nucleus of mass M and charge Z and
radius R. We want to find the angle at which the Rutherford scattering formula
breaks down.

Let α = Zze2/(4πε0). The scattering angle in Eq. (16) is

sin(θs/2) = a√
a2 + b2

, a ≡ α

2E .

The impact parameter b for which the point of closest approach equals R can
be found by using angular momentum conservation,

p0b = b
√

2mE = Rpf = R
√

2m(E − α/R),

b = R

√
2m(E − α/R)√

2mE

= R

√
1− α

ER
.

Rutherford Scattering, Example, wrapping up
Putting these together

θs = 2 sin−1

{
a√

a2 +R2(1− α/(RE))

}
, a = α

2E .

12

It was from this departure of the experimentally measured dσ/dΩ from the
Rutherford formula that allowed Rutherford to infer the radius of the gold
nucleus, R.

Variational Calculus
The calculus of variations involves problems where the quantity to be minimized
or maximized is an integral.

The usual minimization problem one faces involves taking a function L(x),
then finding the single value x for which L is either a maximum or minimum.
In multivariate calculus one also learns to solve problems where you minimize
for multiple variables, L(x1, x2, · · ·xn), and finding the points (x1 · · · yn) in an
n-dimensional space that maximize or minimize the function. Here, we consider
what seems to be a much more ambitious problem. Imagine you have a function
L(x(t), ẋ(t), t), and you wish to find the extrema for an infinite number of values
of x, i.e. x at each point t. The function L will not only depend on x at each
point t, but also on the slope at each point, plus an additional dependence on
t. Note we are NOT finding an optimum value of t, we are finding the set of
optimum values of x at each point t, or equivalently, finding the function x(t).

Variational Calculus, introducing the action
One treats the function x(t) as being unknown while minimizing the action

S =
∫ t2

t1

dt L(x(t), ẋ(t), t).

Thus, we are minimizing S with respect to an infinite number of values of x(ti)
at points ti. As an additional criteria, we will assume that x(t1) and x(t2) are
fixed, and that that we will only consider variations of x between the boundaries.
The dependence on the derivative, ẋ = dx/dt, is crucial because otherwise the
solution would involve simply finding the one value of x that minimized L, and
x(t) would equal a constant if there were no explicit t dependence. Furthermore,
x wouldn’t need to be continuous at the boundary.

Variational Calculus, general Action
In the general case we have an integral of the type

S[q] =
∫ t2

t1

L(q(t), q̇(t), t)dt,

where S is the quantity which is sought minimized or maximized. The
problem is that although L is a function of the general variables q(t), q̇(t), t (note
our change of variables), the exact dependence of q on t is not known. This
means again that even though the integral has fixed limits t1 and t2, the path of
integration is not known. In our case the unknown quantities are the positions

13

and general velocities of a given number of objects and we wish to choose an
integration path which makes the functional S[q] stationary. This means that
we want to find minima, or maxima or saddle points. In physics we search
normally for minima. Our task is therefore to find the minimum of S[q] so that
its variation δS is zero subject to specific constraints. The constraints can be
treated via the technique of Lagrangian multipliers as we will see below.

Variational Calculus, Optimal Path
We assume the existence of an optimum path, that is a path for which S[q] is
stationary. There are infinitely many such paths. The difference between two
paths δq is called the variation of q.

We call the variation η(t) and it is scaled by a factor α. The function η(t) is
arbitrary except for

η(t1) = η(t2) = 0,

and we assume that we can model the change in q as

q(t, α) = q(t) + αη(t),

and

δq = q(t, α)− q(t, 0) = αη(t).

Variational Calculus, Condition for an Extreme Value
We choose q(t, α = 0) as the unkonwn path that will minimize S. The value
q(t, α 6= 0) describes a neighbouring path.

We have

S[q(α)] =
∫ t2

t1

L(q(t, α), q̇(t, α), t)dt.

The condition for an extreme of

S[q(α)] =
∫ t2

t1

L(q(t, α), q̇(t, α), t)dt,

is [
∂S[q(α)]

∂t

]
α=0

= 0.

14

Variational Calculus. α Dependence
The α dependence is contained in q(t, α) and q̇(t, α) meaning that[

∂E[q(α)]
∂α

]
=
∫ t2

t1

(
∂l
∂q

∂q

∂α
+ ∂L
∂q̇

∂q̇

∂α

)
dt.

We have defined

∂q(x, α)
∂α

= η(x)

and thereby

∂q̇(t, α)
∂α

= d(η(t))
dt

.

INtegrating by Parts
Using

∂q(t, α)
∂α

= η(t),

and

∂q̇(t, α)
∂α

= d(η(t))
dt

,

in the integral gives[
∂S[q(α)]
∂α

]
=
∫ t2

t1

(
∂L
∂q
η(t) + ∂L

∂q̇

d(η(t))
dt

)
dt.

Integrating the second term by parts∫ t2

t1

∂L
∂q̇

d(η(t))
dt

dt = η(t)∂L
∂q̇
|t2t1 −

∫ b

a

η(t) d
dx

∂L
∂q̇
dt,

and since the first term dissappears due to η(a) = η(b) = 0, we obtain[
∂S[q(α)]
∂α

]
=
∫ t2

t1

(
∂L
∂q
− d

dx

∂L
∂q̇

)
η(t)dt = 0.

Euler-Lagrange Equations
The latter can be written as[

∂S[q(α)]
∂α

]
α=0

=
∫ t2

t1

(
∂L
∂q
− d

dx

∂L
∂q̇

)
δq(t)dt = δS = 0.

The condition for a stationary value is thus a partial differential equation

15

∂L
∂q
− d

dx

∂L
∂q̇

= 0,

known as the Euler-Lagrange equation.

16

