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Aims and Overarching Motivation
Monday.

1. Computational topics: functions and classes (continuation of Julie’s lecture
from last Friday).

2. From the harmonic oscillator to the gravitational force and Kepler’s laws

Reading suggestion: Taylor section 8.4 and Lecture notes

Wednesday.

1. Discussion of elliptical orbits and Kepler’s laws

Reading suggestion: Taylor sections 8.5-8.8

Friday.

1. Physical interpretation of various orbit types and start discussion two-body
scattering

Reading suggestion: Taylor section 8.5-8.8 and sections 14.1-14.2

Deriving Elliptical Orbits
Kepler’s laws state that a gravitational orbit should be an ellipse with the source
of the gravitational field at one focus. Deriving this is surprisingly messy. To do
this, we first use angular momentum conservation to transform the equations of
motion so that it is in terms of r and θ instead of r and t. The overall strategy
is to
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1. Find equations of motion for r and t with no angle (θ) mentioned, i.e. d2r/dt2 =
· · · . Angular momentum conservation will be used, and the equation will
involve the angular momentum L.

2. Use angular momentum conservation to find an expression for θ̇ in terms
of r.

3. Use the chain rule to convert the equations of motions for r, an expres-
sion involving r, ṙ and r̈, to one involving r, dr/dθ and d2r/dθ2. This is
quitecomplicated because the expressions will also involve a substitution
u = 1/r so that one finds an expression in terms of u and θ.

4. Once u(θ) is found, you need to show that this can be converted to the
familiar form for an ellipse.

The equations of motion give

d

dt
r2 = d

dt
(x2 + y2) = 2xẋ+ 2yẏ = 2rṙ, (1)

ṙ = x

r
ẋ+ y

r
ẏ,

r̈ = x

r
ẍ+ y

r
ÿ + ẋ2 + ẏ2

r
− ṙ2

r
.

Recognizing that the numerator of the third term is the velocity squared,
and that it can be written in polar coordinates,

v2 = ẋ2 + ẏ2 = ṙ2 + r2θ̇2, (2)

one can write r̈ as

r̈ = Fx cos θ + Fy sin θ
m

+ ṙ2 + r2θ̇2

r
− ṙ2

r
(3)

= F

m
+ r2θ̇2

r

mr̈ = F + L2

mr3 .

This derivation used the fact that the force was radial, F = Fr = Fx cos θ +
Fy sin θ, and that angular momentum is L = mrvθ = mr2θ̇. The term L2/mr3 =
mv2/r behaves like an additional force. Sometimes this is referred to as a
centrifugal force, but it is not a force. Instead, it is the consequence of considering
the motion in a rotating (and therefore accelerating) frame.

Now, we switch to the particular case of an attractive inverse square force,
F = −α/r2, and show that the trajectory, r(θ), is an ellipse. To do this we
transform derivatives w.r.t. time to derivatives w.r.t. θ using the chain rule
combined with angular momentum conservation, θ̇ = L/mr2.
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ṙ = dr

dθ
θ̇ = dr

dθ

L

mr2 , (4)

r̈ = d2r

dθ2 θ̇
2 + dr

dθ

(
d

dr

L

mr2

)
ṙ

= d2r

dθ2

(
L

mr2

)2
− 2dr

dθ

L

mr3 ṙ

= d2r

dθ2

(
L

mr2

)2
− 2
r

(
dr

dθ

)2(
L

mr2

)2

Equating the two expressions for r̈ in Eq.s (3) and (4) eliminates all the
derivatives w.r.t. time, and provides a differential equation with only derivatives
w.r.t. θ,

d2r

dθ2

(
L

mr2

)2
− 2
r

(
dr

dθ

)2(
L

mr2

)2
= F

m
+ L2

m2r3 , (5)

that when solved yields the trajectory, i.e. r(θ). Up to this point the expres-
sions work for any radial force, not just forces that fall as 1/r2.

The trick to simplifying this differential equation for the inverse square
problems is to make a substitution, u ≡ 1/r, and rewrite the differential equation
for u(θ).

r = 1/u, (6)
dr

dθ
= − 1

u2
du

dθ
,

d2r

dθ2 = 2
u3

(
du

dθ

)2
− 1
u2
d2u

dθ2 .

Plugging these expressions into Eq. (5) gives an expression in terms of u,
du/dθ, and d2u/dθ2. After some tedious algebra,

d2u

dθ2 = −u− Fm

L2u2 . (7)

For the attractive inverse square law force, F = −αu2,

d2u

dθ2 = −u+ mα

L2 . (8)

The solution has two arbitrary constants, A and θ0,

u = mα

L2 +A cos(θ − θ0), (9)

r = 1
(mα/L2) +A cos(θ − θ0) .
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The radius will be at a minimum when θ = θ0 and at a maximum when
θ = θ0 + π. The constant A is related to the eccentricity of the orbit. When
A = 0 the radius is a constant r = L2/(mα), and the motion is circular. If one
solved the expression mv2/r = −α/r2 for a circular orbit, using the substitution
v = L/(mr), one would reproduce the expression r = L2/(mα).

The form describing the elliptical trajectory in Eq. (9) can be identified as an
ellipse with one focus being the center of the ellipse by considering the definition
of an ellipse as being the points such that the sum of the two distances between
the two foci are a constant. Making that distance 2D, the distance between the
two foci as 2a, and putting one focus at the origin,

2D = r +
√

(r cos θ − 2a)2 + r2 sin2 θ, (10)

4D2 + r2 − 4Dr = r2 + 4a2 − 4ar cos θ,

r = D2 − a2

D + a cos θ = 1
D/(D2 − a2)− a cos θ/(D2 − a2) .

By inspection, this is the same form as Eq. (9) with D/(D2 − a2) = mα/L2

and a/(D2 − a2) = A.
Let us remind ourselves about what an ellipse is before we proceed.
import numpy as np
from matplotlib import pyplot as plt
from math import pi

u=1. #x-position of the center
v=0.5 #y-position of the center
a=2. #radius on the x-axis
b=1.5 #radius on the y-axis

t = np.linspace(0, 2*pi, 100)
plt.plot( u+a*np.cos(t) , v+b*np.sin(t) )
plt.grid(color='lightgray',linestyle='--')
plt.show()

Effective or Centrifugal Potential
The total energy of a particle is

E = V (r) + 1
2mv

2
θ + 1

2mṙ
2 (11)

= V (r) + 1
2mr

2θ̇2 + 1
2mṙ

2

= V (r) + L2

2mr2 + 1
2mṙ

2.

The second term then contributes to the energy like an additional repulsive
potential. The term is sometimes referred to as the "centrifugal" potential, even
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though it is actually the kinetic energy of the angular motion. Combined with
V (r), it is sometimes referred to as the "effective" potential,

Veff(r) = V (r) + L2

2mr2 . (12)

Note that if one treats the effective potential like a real potential, one would
expect to be able to generate an effective force,

Feff = − d

dr
V (r)− d

dr

L2

2mr2 (13)

= F (r) + L2

mr3 = F (r) +m
v2
⊥
r
,

which is indeed matches the form for mr̈ in Eq. (3), which included the
centrifugal force.

The following code plots this effective potential for a simple choice of pa-
rameters, with a standard gravitational potential −α/r. Here we have chosen
L = m = α = 1.

# Common imports
import numpy as np
from math import *
import matplotlib.pyplot as plt

Deltax = 0.01
#set up arrays
xinitial = 0.3
xfinal = 5.0
alpha = 1.0 # spring constant
m = 1.0 # mass, you can change these
AngMom = 1.0 # The angular momentum
n = ceil((xfinal-xinitial)/Deltax)
x = np.zeros(n)
for i in range(n):

x[i] = xinitial+i*Deltax
V = np.zeros(n)
V = -alpha/x+0.5*AngMom*AngMom/(m*x*x)
# Plot potential
fig, ax = plt.subplots()
ax.set_xlabel('r[m]')
ax.set_ylabel('V[J]')
ax.plot(x, V)
fig.tight_layout()
plt.show()

Gravitational force example. Using the above parameters, we can now
study the evolution of the system using for example the velocity Verlet method.
This is done in the code here for an initial radius equal to the minimum of the
potential well. We seen then that the radius is always the same and corresponds
to a circle (the radius is always constant).
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# Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt
import os

# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

# Simple Gravitational Force -alpha/r

DeltaT = 0.01
#set up arrays
tfinal = 100.0
n = ceil(tfinal/DeltaT)
# set up arrays for t, v and r
t = np.zeros(n)
v = np.zeros(n)
r = np.zeros(n)
# Constants of the model, setting all variables to one for simplicity
alpha = 1.0
AngMom = 1.0 # The angular momentum
m = 1.0 # scale mass to one
c1 = AngMom*AngMom/(m*m)
c2 = AngMom*AngMom/m
rmin = (AngMom*AngMom/m/alpha)
# Initial conditions
r0 = rmin
v0 = 0.0
r[0] = r0
v[0] = v0
# Start integrating using the Velocity-Verlet method
for i in range(n-1):

# Set up acceleration
a = -alpha/(r[i]**2)+c1/(r[i]**3)
# update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a
anew = -alpha/(r[i+1]**2)+c1/(r[i+1]**3)
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
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t[i+1] = t[i] + DeltaT
# Plot position as function of time

fig, ax = plt.subplots(2,1)
ax[0].set_xlabel('time')
ax[0].set_ylabel('radius')
ax[0].plot(t,r)
ax[1].set_xlabel('time')
ax[1].set_ylabel('Velocity')
ax[1].plot(t,v)
save_fig("RadialGVV")
plt.show()

Changing the value of the initial position to a value where the energy is
positive, leads to an increasing radius with time, a so-called unbound orbit.
Choosing on the other hand an initial radius that corresponds to a negative
energy and different from the minimum value leads to a radius that oscillates
back and forth between two values.

Harmonic Oscillator in two dimensions. Consider a particle of mass m
in a 2-dimensional harmonic oscillator with potential

V = 1
2kr

2 = 1
2k(x2 + y2).

If the orbit has angular momentum L, we can find the radius and angular
velocity of the circular orbit as well as the b) the angular frequency of small
radial perturbations.

We consider the effective potential. The radius of a circular orbit is at the
minimum of the potential (where the effective force is zero). The potential is
plotted here with the parameters k = m = 0.1 and L = 1.0.

# Common imports
import numpy as np
from math import *
import matplotlib.pyplot as plt

Deltax = 0.01
#set up arrays
xinitial = 0.5
xfinal = 3.0
k = 1.0 # spring constant
m = 1.0 # mass, you can change these
AngMom = 1.0 # The angular momentum
n = ceil((xfinal-xinitial)/Deltax)
x = np.zeros(n)
for i in range(n):

x[i] = xinitial+i*Deltax
V = np.zeros(n)
V = 0.5*k*x*x+0.5*AngMom*AngMom/(m*x*x)
# Plot potential
fig, ax = plt.subplots()
ax.set_xlabel('r[m]')
ax.set_ylabel('V[J]')
ax.plot(x, V)
fig.tight_layout()
plt.show()
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Veff = 1
2kr

2 + L2

2mr2

The effective potential looks like that of a harmonic oscillator for large r, but
for small r, the centrifugal potential repels the particle from the origin. The
combination of the two potentials has a minimum for at some radius rmin.

0 = krmin −
L2

mr3
min

,

rmin =
(
L2

mk

)1/4

,

θ̇ = L

mr2
min

=
√
k/m.

For particles at rmin with ṙ = 0, the particle does not accelerate and r stays
constant, i.e. a circular orbit. The radius of the circular orbit can be adjusted
by changing the angular momentum L.

For the above parameters this minimum is at rmin = 1.
Now consider small vibrations about rmin. The effective spring constant is

the curvature of the effective potential.

keff = d2

dr2Veff(r)
∣∣∣∣
r=rmin

= k + 3L2

mr4
min

= 4k,
ω =

√
keff/m = 2

√
k/m = 2θ̇.

Because the radius oscillates with twice the angular frequency, the orbit
has two places where r reaches a minimum in one cycle. This differs from the
inverse-square force where there is one minimum in an orbit. One can show that
the orbit for the harmonic oscillator is also elliptical, but in this case the center
of the potential is at the center of the ellipse, not at one of the foci.

The solution is also simple to write down exactly in Cartesian coordinates.
The x and y equations of motion separate,

ẍ = −kx,
ÿ = −ky.

The general solution can be expressed as

x = A cosω0t+B sinω0t,

y = C cosω0t+D sinω0t.
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The code here finds the solution for x and y using the code we developed in
homework 5 and 6 and the midterm. Note that this code is tailored to run in
Cartesian coordinates. There is thus no angular momentum dependent term.

Here we have chose initial conditions that correspond to the minimum of the
effective potential rmin. We have chosen x0 = rmin and y0 = 0. Similarly, we use
the centripetal acceleration to determine the initial velocity so that we have a
circular motion (see back to the last question of the midterm). This means that
we set the centripetal acceleration v2/r equal to the force from the harmonic
oscillator −kr. Taking the magnitude of r we have then v2/r = k/mr, which
gives v = ±ω0r.

Since the code here solves the equations of motion in cartesian coordinates
and the harmonic oscillator potential leads to forces in the x- and y-directions
that are decoupled, we have to select the initial velocities and positions so that
we don’t get that for example y(t) = 0.

We set x0 to be different from zero and vy0 to be different from zero.

DeltaT = 0.001
#set up arrays
tfinal = 10.0
n = ceil(tfinal/DeltaT)
# set up arrays
t = np.zeros(n)
v = np.zeros((n,2))
r = np.zeros((n,2))
radius = np.zeros(n)
# Constants of the model
k = 1.0 # spring constant
m = 1.0 # mass, you can change these
omega02 = k/m # Frequency
AngMom = 1.0 # The angular momentum
# Potential minimum
rmin = (AngMom*AngMom/k/m)**0.25
# Initial conditions as compact 2-dimensional arrays, x0=rmin and y0 = 0
x0 = rmin; y0= 0.0
r0 = np.array([x0,y0])
vy0 = sqrt(omega02)*rmin; vx0 = 0.0
v0 = np.array([vx0,vy0])
r[0] = r0
v[0] = v0
# Start integrating using the Velocity-Verlet method
for i in range(n-1):

# Set up the acceleration
a = -r[i]*omega02
# update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a
anew = -r[i+1]*omega02
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
t[i+1] = t[i] + DeltaT

# Plot position as function of time
radius = np.sqrt(r[:,0]**2+r[:,1]**2)
fig, ax = plt.subplots(3,1)
ax[0].set_xlabel('time')
ax[0].set_ylabel('radius squared')
ax[0].plot(t,r[:,0]**2+r[:,1]**2)
ax[1].set_xlabel('time')
ax[1].set_ylabel('x position')
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ax[1].plot(t,r[:,0])
ax[2].set_xlabel('time')
ax[2].set_ylabel('y position')
ax[2].plot(t,r[:,1])

fig.tight_layout()
save_fig("2DimHOVV")
plt.show()

We see that the radius (to within a given error), we obtain a constant radius.
The following code shows first how we can solve this problem using the radial

degrees of freedom only. Here we need to add the explicit centrifugal barrier.
Note that the variable r depends only on time. There is no x and y directions
since we have transformed the equations to polar coordinates.

DeltaT = 0.01
#set up arrays
tfinal = 10.0
n = ceil(tfinal/DeltaT)
# set up arrays for t, v and r
t = np.zeros(n)
v = np.zeros(n)
r = np.zeros(n)
E = np.zeros(n)
# Constants of the model
AngMom = 1.0 # The angular momentum
m = 1.0
k = 1.0
omega02 = k/m
c1 = AngMom*AngMom/(m*m)
c2 = AngMom*AngMom/m
rmin = (AngMom*AngMom/k/m)**0.25
# Initial conditions
r0 = rmin
v0 = 0.0
r[0] = r0
v[0] = v0
E[0] = 0.5*m*v0*v0+0.5*k*r0*r0+0.5*c2/(r0*r0)
# Start integrating using the Velocity-Verlet method
for i in range(n-1):

# Set up acceleration
a = -r[i]*omega02+c1/(r[i]**3)
# update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a
anew = -r[i+1]*omega02+c1/(r[i+1]**3)
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
t[i+1] = t[i] + DeltaT
E[i+1] = 0.5*m*v[i+1]*v[i+1]+0.5*k*r[i+1]*r[i+1]+0.5*c2/(r[i+1]*r[i+1])
# Plot position as function of time

fig, ax = plt.subplots(2,1)
ax[0].set_xlabel('time')
ax[0].set_ylabel('radius')
ax[0].plot(t,r)
ax[1].set_xlabel('time')
ax[1].set_ylabel('Energy')
ax[1].plot(t,E)
save_fig("RadialHOVV")
plt.show()

With some work using double angle formulas, one can calculate
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r2 = x2 + y2

= (A2 + C2) cos2(ω0t) + (B2 +D2) sin2 ω0t+ (AB + CD) cos(ω0t) sin(ω0t)
= α+ β cos 2ω0t+ γ sin 2ω0t,

α = A2 +B2 + C2 +D2

2 , β = A2 −B2 + C2 −D2

2 , γ = AB + CD,

r2 = α+ (β2 + γ2)1/2 cos(2ω0t− δ), δ = arctan(γ/β),

and see that radius oscillates with frequency 2ω0. The factor of two comes
because the oscillation x = A cosω0t has two maxima for x2, one at t = 0 and
one a half period later.

Stability of Orbits
The effective force can be extracted from the effective potential, Veff . Beginning
from the equations of motion, Eq. (1), for r,

mr̈ = F + L2

mr3 (14)

= Feff

= −∂rVeff ,

Feff = −∂r
[
V (r) + (L2/2mr2)

]
.

For a circular orbit, the radius must be fixed as a function of time, so one
must be at a maximum or a minimum of the effective potential. However, if one
is at a maximum of the effective potential the radius will be unstable. For the
attractive Coulomb force the effective potential will be dominated by the −α/r
term for large r because the centrifugal part falls off more quickly, ∼ 1/r2. At
low r the centrifugal piece wins and the effective potential is repulsive. Thus,
the potential must have a minimum somewhere with negative potential. The
circular orbits are then stable to perturbation.

The effective potential is sketched for two cases, a 1/r attractive potential
and a 1/r3 attractive potential. The 1/r case has a stable minimum, whereas
the circular orbit in the 1/r3 case is unstable.

If one considers a potential that falls as 1/r3, the situation is reversed and
the point where ∂rV disappears will be a local maximum rather than a local
minimum. Fig to come here with code

The repulsive centrifugal piece dominates at large r and the attractive
Coulomb piece wins out at small r. The circular orbit is then at a maximum
of the effective potential and the orbits are unstable. It is the clear that for
potentials that fall as rn, that one must have n > −2 for the orbits to be stable.

Consider a potential V (r) = βr. For a particle of mass m with angular
momentum L, find the angular frequency of a circular orbit. Then find the
angular frequency for small radial perturbations.
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For the circular orbit you search for the position rmin where the effective
potential is minimized,

∂r

{
βr + L2

2mr2

}
= 0,

β = L2

mr3
min

,

rmin =
(
L2

βm

)1/3

,

θ̇ = L

mr2
min

= β2/3

(mL)1/3

Now, we can find the angular frequency of small perturbations about the
circular orbit. To do this we find the effective spring constant for the effective
potential,

keff = ∂2
r Veff |rmin

= 3L2

mr4
min

,

ω =
√
keff

m

= β2/3

(mL)1/3

√
3.

If the two frequencies, θ̇ and ω, differ by an integer factor, the orbit’s trajectory
will repeat itself each time around. This is the case for the inverse-square force,
ω = θ̇, and for the harmonic oscillator, ω = 2θ̇. In this case, ω =

√
3θ̇, and the

angles at which the maxima and minima occur change with each orbit.

Code example with gravitional force. The code example here is meant to
illustrate how we can make a plot of the final orbit. We solve the equations in
polar coordinates (the example here uses the minimum of the potential as initial
value) and then we transform back to cartesian coordinates and plot x versus y.
We see that we get a perfect circle when we place ourselves at the minimum of
the potential energy, as expected.

# Simple Gravitational Force -alpha/r

DeltaT = 0.01
#set up arrays
tfinal = 8.0
n = ceil(tfinal/DeltaT)
# set up arrays for t, v and r
t = np.zeros(n)
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v = np.zeros(n)
r = np.zeros(n)
phi = np.zeros(n)
x = np.zeros(n)
y = np.zeros(n)
# Constants of the model, setting all variables to one for simplicity
alpha = 1.0
AngMom = 1.0 # The angular momentum
m = 1.0 # scale mass to one
c1 = AngMom*AngMom/(m*m)
c2 = AngMom*AngMom/m
rmin = (AngMom*AngMom/m/alpha)
# Initial conditions, place yourself at the potential min
r0 = rmin
v0 = 0.0 # starts at rest
r[0] = r0
v[0] = v0
phi[0] = 0.0
# Start integrating using the Velocity-Verlet method
for i in range(n-1):

# Set up acceleration
a = -alpha/(r[i]**2)+c1/(r[i]**3)
# update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a
anew = -alpha/(r[i+1]**2)+c1/(r[i+1]**3)
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
t[i+1] = t[i] + DeltaT
phi[i+1] = t[i+1]*c2/(r0**2)

# Find cartesian coordinates for easy plot
x = r*np.cos(phi)
y = r*np.sin(phi)
fig, ax = plt.subplots(3,1)
ax[0].set_xlabel('time')
ax[0].set_ylabel('radius')
ax[0].plot(t,r)
ax[1].set_xlabel('time')
ax[1].set_ylabel('Angle $\cos{\phi}$')
ax[1].plot(t,np.cos(phi))
ax[2].set_ylabel('y')
ax[2].set_xlabel('x')
ax[2].plot(x,y)

save_fig("Phasespace")
plt.show()

Try to change the initial value for r and see what kind of orbits you get. In
order to test different energies, it can be useful to look at the plot of the effective
potential discussed above.

However, for orbits different from a circle the above code would need modifi-
cations in order to allow us to display say an ellipse. For the latter, it is much
easier to run our code in cartesian coordinates, as done here. In this code we
test also energy conservation and see that it is conserved to numerical precision.
The code here is a simple extension of the code we developed for homework 4.

# Common imports
import numpy as np
import pandas as pd
from math import *
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import matplotlib.pyplot as plt

DeltaT = 0.01
#set up arrays
tfinal = 10.0
n = ceil(tfinal/DeltaT)
# set up arrays
t = np.zeros(n)
v = np.zeros((n,2))
r = np.zeros((n,2))
E = np.zeros(n)
# Constants of the model
m = 1.0 # mass, you can change these
alpha = 1.0
# Initial conditions as compact 2-dimensional arrays
x0 = 0.5; y0= 0.
r0 = np.array([x0,y0])
v0 = np.array([0.0,1.0])
r[0] = r0
v[0] = v0
rabs = sqrt(sum(r[0]*r[0]))
E[0] = 0.5*m*(v[0,0]**2+v[0,1]**2)-alpha/rabs
# Start integrating using the Velocity-Verlet method
for i in range(n-1):

# Set up the acceleration
rabs = sqrt(sum(r[i]*r[i]))
a = -alpha*r[i]/(rabs**3)
# update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a
rabs = sqrt(sum(r[i+1]*r[i+1]))
anew = -alpha*r[i+1]/(rabs**3)
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
E[i+1] = 0.5*m*(v[i+1,0]**2+v[i+1,1]**2)-alpha/rabs
t[i+1] = t[i] + DeltaT

# Plot position as function of time
fig, ax = plt.subplots(3,1)
ax[0].set_ylabel('y')
ax[0].set_xlabel('x')
ax[0].plot(r[:,0],r[:,1])
ax[1].set_xlabel('time')
ax[1].set_ylabel('y position')
ax[1].plot(t,r[:,0])
ax[2].set_xlabel('time')
ax[2].set_ylabel('y position')
ax[2].plot(t,r[:,1])

fig.tight_layout()
save_fig("2DimGravity")
plt.show()
print(E)

Scattering and Cross Sections
Scattering experiments don’t measure entire trajectories. For elastic collisions,
they measure the distribution of final scattering angles at best. Most experiments
use targets thin enough so that the number of scatterings is typically zero or one.
The cross section, σ, describes the cross-sectional area for particles to scatter
with an individual target atom or nucleus. Cross section measurements form
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the basis for MANY fields of physics. BThe cross section, and the differential
cross section, encapsulates everything measurable for a collision where all that
is measured is the final state, e.g. the outgoing particle had momentum pf . y
studying cross sections, one can infer information about the potential interaction
between the two particles. Inferring, or constraining, the potential from the
cross section is a classic inverse problem. Collisions are either elastic or inelastic.
Elastic collisions are those for which the two bodies are in the same internal
state before and after the collision. If the collision excites one of the participants
into a higher state, or transforms the particles into different species, or creates
additional particles, the collision is inelastic. Here, we consider only elastic
collisions.

For Coulomb forces, the cross section is infinite because the range of the
Coulomb force is infinite, but for interactions such as the strong interaction in
nuclear or particle physics, there is no long-range force and cross-sections are
finite. Even for Coulomb forces, the part of the cross section that corresponds
to a specific scattering angle, dσ/dΩ, which is a function of the scattering angle
θs is still finite.

If a particle travels through a thin target, the chance the particle scatters is
Pscatt = σdN/dA, where dN/dA is the number of scattering centers per area the
particle encounters. If the density of the target is ρ particles per volume, and if
the thickness of the target is t, the areal density (number of target scatterers per
area) is dN/dA = ρt. Because one wishes to quantify the collisions independently
of the target, experimentalists measure scattering probabilities, then divide by
the areal density to obtain cross-sections,

σ = Pscatt

dN/dA
. (15)

Instead of merely stating that a particle collided, one can measure the
probability the particle scattered by a given angle. The scattering angle θs is
defined so that at zero the particle is unscattered and at θs = π the particle
is scattered directly backward. Scattering angles are often described in the
center-of-mass frame, but that is a detail we will neglect for this first discussion,
where we will consider the scattering of particles moving classically under the
influence of fixed potentials U(r). Because the distribution of scattering angles
can be measured, one expresses the differential cross section,

d2σ

d cos θs dφ
. (16)

Usually, the literature expresses differential cross sections as

dσ/dΩ = dσ

d cos θdφ = 1
2π

dσ

d cos θ , (17)

where the last equivalency is true when the scattering does not depend on
the azimuthal angle φ, as is the case for spherically symmetric potentials.
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The differential solid angle dΩ can be thought of as the area subtended by a
measurement, dAd, divided by r2, where r is the distance to the detector,

dAd = r2dΩ. (18)

With this definition dσ/dΩ is independent of the distance from which one
places the detector, or the size of the detector (as long as it is small).

Differential scattering cross sections are calculated by assuming a random
distribution of impact parameters b. These represent the distance in the xy
plane for particles moving in the z direction relative to the scattering center.
An impact parameter b = 0 refers to being aimed directly at the target’s center.
The impact parameter describes the transverse distance from the z = 0 axis for
the trajectory when it is still far away from the scattering center and has not yet
passed it. The differential cross section can be expressed in terms of the impact
parameter,

dσ = 2πbdb, (19)

which is the area of a thin ring of radius b and thickness db. In classical
physics, one can calculate the trajectory given the incoming kinetic energy E and
the impact parameter if one knows the mass and potential. From the trajectory,
one then finds the scattering angle θs(b). The differential cross section is then

dσ

dΩ = 1
2π

dσ

d cos θs
= b

db

d cos θs
= b

(d/db) cos θs(b)
. (20)

Typically, one would calculate cos θs and (d/db) cos θs as functions of b. This
is sufficient to plot the differential cross section as a function of θs.

The total cross section is

σtot =
∫
dΩ dσ

dΩ = 2π
∫
d cos θs

dσ

dΩ . (21)

Even if the total cross section is infinite, e.g. Coulomb forces, one can still
have a finite differential cross section as we will see later on.

An asteroid of mass m and kinetic energy E approaches a planet of radius R
and mass M . What is the cross section for the asteroid to impact the planet?

Solution. Calculate the maximum impact parameter, bmax, for which the
asteroid will hit the planet. The total cross section for impact is σimpact = πb2max.
The maximum cross-section can be found with the help of angular momentum
conservation. The asteroid’s incoming momentum is p0 =

√
2mE and the angular

momentum is L = p0b. If the asteroid just grazes the planet, it is moving with
zero radial kinetic energy at impact. Combining energy and angular momentum
conservation and having pf refer to the momentum of the asteroid at a distance
R,
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p2
f

2m −
GMm

R
= E,

pfR = p0bmax,

allows one to solve for bmax,

bmax = R
pf
p0

= R

√
2m(E +GMm/R)√

2mE

σimpact = πR2E +GMm/R

E
.

Rutherford Scattering
This refers to the calculation of dσ/dΩ due to an inverse square force, F12 =
±α/r2 for repulsive/attractive interaction. Rutherford compared the scattering
of α particles (4He nuclei) off of a nucleus and found the scattering angle at
which the formula began to fail. This corresponded to the impact parameter for
which the trajectories would strike the nucleus. This provided the first measure
of the size of the atomic nucleus. At the time, the distribution of the positive
charge (the protons) was considered to be just as spread out amongst the atomic
volume as the electrons. After Rutherford’s experiment, it was clear that the
radius of the nucleus tended to be roughly 4 orders of magnitude smaller than
that of the atom, which is less than the size of a football relative to Spartan
Stadium.

The incoming and outgoing angles of the trajectory are at ±θ′. They are
related to the scattering angle by 2θ′ = π + θs.

In order to calculate differential cross section, we must find how the impact
parameter is related to the scattering angle. This requires analysis of the
trajectory. We consider our previous expression for the trajectory where we
derived the elliptic form for the trajectory, Eq. (9). For that case we considered
an attractive force with the particle’s energy being negative, i.e. it was bound.
However, the same form will work for positive energy, and repulsive forces can be
considered by simple flipping the sign of α. For positive energies, the trajectories
will be hyperbolas, rather than ellipses, with the asymptotes of the trajectories
representing the directions of the incoming and outgoing tracks. Rewriting Eq.
(9),

r = 1
mα
L2 +A cos θ . (22)

Once A is large enough, which will happen when the energy is positive, the
denominator will become negative for a range of θ. This is because the scattered
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particle will never reach certain angles. The asymptotic angles θ′ are those for
which the denominator goes to zero,

cos θ′ = − mα

AL2 . (23)

The trajectory’s point of closest approach is at θ = 0 and the two angles
θ′, which have this value of cos θ′, are the angles of the incoming and outgoing
particles. From Fig (to come), one can see that the scattering angle θs is given
by,

2θ′ − π = θs, θ′ = π

2 + θs
2 , (24)

sin(θs/2) = − cos θ′

= mα

AL2 .

Now that we have θs in terms of m,α,L and A, we wish to re-express L and
A in terms of the impact parameter b and the energy E. This will set us up to
calculate the differential cross section, which requires knowing db/dθs. It is easy
to write the angular momentum as

L2 = p2
0b

2 = 2mEb2. (25)

Finding A is more complicated. To accomplish this we realize that the point
of closest approach occurs at θ = 0, so from Eq. (22)

1
rmin

= mα

L2 +A, (26)

A = 1
rmin

− mα

L2 .

Next, rmin can be found in terms of the energy because at the point of closest
approach the kinetic energy is due purely to the motion perpendicular to r̂ and

E = − α

rmin
+ L2

2mr2
min

. (27)

One can solve the quadratic equation for 1/rmin,

1
rmin

= mα

L2 +
√

(mα/L2)2 + 2mE/L2. (28)

We can plug the expression for rmin into the expression for A, Eq. (26),

A =
√

(mα/L2)2 + 2mE/L2 =
√

(α2/(4E2b4) + 1/b2 (29)

Finally, we insert the expression for A into that for the scattering angle, Eq.
(24),
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sin(θs/2) = mα

AL2 (30)

= a√
a2 + b2

, a ≡ α

2E

The differential cross section can now be found by differentiating the expres-
sion for θs with b,

1
2 cos(θs/2)dθs = ab db

(a2 + b2)3/2 = bdb

a2 sin3(θs/2), (31)

dσ = 2πbdb = πa2

sin3(θs/2)
cos(θs/2)dθs

= πa2

2 sin4(θs/2)
sin θsdθs

dσ

d cos θs
= πa2

2 sin4(θs/2)
,

dσ

dΩ = a2

4 sin4(θs/2)
.

where a = α/2E. This the Rutherford formula for the differential cross
section. It diverges as θs → 0 because scatterings with arbitrarily large impact
parameters still scatter to arbitrarily small scattering angles. The expression for
dσ/dΩ is the same whether the interaction is positive or negative.

Consider a particle of mass m and charge z with kinetic energy E (Let it be
the center-of-mass energy) incident on a heavy nucleus of mass M and charge Z
and radius R. Find the angle at which the Rutherford scattering formula breaks
down.

Solution. Let α = Zze2/(4πε0). The scattering angle in Eq. (30) is

sin(θs/2) = a√
a2 + b2

, a ≡ α

2E .

The impact parameter b for which the point of closest approach equals R can
be found by using angular momentum conservation,

p0b = b
√

2mE = Rpf = R
√

2m(E − α/R),

b = R

√
2m(E − α/R)√

2mE

= R

√
1− α

ER
.

Putting these together
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θs = 2 sin−1

{
a√

a2 +R2(1− α/(RE))

}
, a = α

2E .

It was from this departure of the experimentally measured dσ/dΩ from the
Rutherford formula that allowed Rutherford to infer the radius of the gold
nucleus, R.

Just like electrodynamics, one can define "fields", which for a small additional
mass m are the force per mass and the additional potential energy per mass.
The gravitational field related to the force has dimensions of force per mass,
or acceleration, and can be labeled g(r). The potential energy per mass has
dimensions of energy per mass. This is analogous to the electromagnetic potential,
which is the potential energy per charge, and the electric field which is the force
per charge.

Because the field g obeys the same inverse square law for a point mass as
the electric field does for a point charge, the gravitational field also satisfies a
version of Gauss’s law, ∮

dA · g = −4πGMinside. (32)

Here, Minside is the net mass inside a closed area.
Gauss’s law can be understood by considering a nozzle that sprays paint in

all directions uniformly from a point source. Let B be the number of gallons per
minute of paint leaving the nozzle. If the nozzle is at the center of a sphere of
radius r, the paint per square meter per minute that is deposited on some part
of the sphere is

F (r) = B

4πr2 . (33)

Now, let F also be assigned a direction, so that it becomes a vector pointing
along the direction of the flying paint. For any surface that surrounds the nozzle,
not necessarily a sphere, one can state that

∮
dA · F = B, (34)

regardless of the shape of the surface. This follows because the rate at which
paint is deposited on the surface should equal the rate at which it leaves the
nozzle. The dot product ensures that only the component of F into the surface
contributes to the deposition of paint. Similarly, if F is any radial inverse-square
forces, that falls as B/(4πr2), then one can apply Eq. (34). For gravitational
fields, B/(4π) is replaced by GM , and one quickly “derives” Gauss’s law for
gravity, Eq. (32).

Consider Earth to have its mass M uniformly distributed in a sphere of
radius R. Find the magnitude of the gravitational acceleration as a function of
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the radius r in terms of the acceleration of gravity at the surface g(R). Assume
r < R, i.e. you are inside the surface.

Solution: Take the ratio of Eq. (32) for two radii, R and r < R,

4πr2g(r)
4πR2g(R) = 4πGMinside r

4πGMinside R

= r3

R3

g(r) = g(R) r
R
.

The potential energy per mass is similar conceptually to the voltage, or electric
potential energy per charge, that was studied in electromagnetism, if V ≡ U/m,
g = −∇V .

Tidal Forces
Consider a spherical planet of radius r a distance D from another body of mass
M . The magnitude of the force due to M on an small object of mass δm on
surface of the planet can be calculated by performing a Taylor expansion about
the center of the spherical planet.

F = −GMδm

D2 + 2GMδm

D3 ∆D + · · · (35)

If the z direction points toward the large object, ∆D can be referred to as z.
In the accelerating frame of an observer at the center of the planet,

δm
d2z

dt2
= F − δma′ + other forces acting on δm, (36)

where a′ is the acceleration of the observer. Because δma′ equals the gravi-
tational force on δm if it were located at the planet’s center, one can write

m
d2z

dt2
= 2GMδm

D3 z + other forces acting on δm. (37)

Here the other forces could represent the forces acting on δm from the
spherical planet such as the gravitational force or the contact force with the
surface. If θ is the angle w.r.t. the z axis, the effective force acting on δm is

Feff ≈ 2GMδm

D3 r cos θẑ + other forces acting on δm. (38)

This first force is the "tidal" force. It pulls objects outward from the center
of the object. If the object were covered with water, it would distort the objects
shape so that the shape would be elliptical, stretched out along the axis pointing
toward the large massM . The force is always along (either parallel or antiparallel
to) the ẑ direction.
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Consider the Earth to be a sphere of radius R covered with water, with the
gravitational acceleration at the surface noted by g. Now assume that a distant
body provides an additional constant gravitational acceleration a pointed along
the z axis. Find the distortion of the radius as a function of θ. Ignore planetary
rotation and assume a << g.

Solution: Because Earth would then accelerate with a, the field a would
seem invisible in the accelerating frame. A tidal force would only appear if a
depended on position, i.e. ∇a 6= 0.

Now consider that the field is no longer constant, but that instead a = −kz
with |kR| << g.

Solution: The surface of the planet needs to be at constant potential (if the
planet is not accelerating). The force per mass, −kz is like a spring, and the
potential per mass is kz2/2. Otherwise water would move to a point of lower
potential. Thus, the potential energy for a sample mass δm is

V (R) + δmgh(θ)− δm

2 kr2 cos2 θ = Constant

V (R) + δmgh(θ)− δm

2 kR2 cos2 θ − δmkRh(θ) cos2 θ − δm

2 kh2(θ) cos2 θ = Constant.

Here, the potential due to the external field is (1/2)kz2 so that −∇U = −kz.
One now needs to solve for h(θ). Absorbing all the constant terms from both
sides of the equation into one constant C, and because both h and kR are small,
we can through away terms of order h2 or kRh. This gives

gh(θ)− 1
2kR

2 cos2 θ = C,

h(θ) = C

g
+ 1

2g kR
2 cos2 θ,

h(θ) = 1
2g kR

2(cos2 θ − 1/3).

The term with the factor of 1/3 replaced the constant and was chosen so
that the average height of the water would be zero.

The Sun’s mass is 27×106 the Moon’s mass, but the Sun is 390 times further
away from Earth as the Sun. What is ratio of the tidal force of the Sun to that
of the Moon.

Solution: The gravitational force due to an object M a distance D away
goes as M/D2, but the tidal force is only the difference of that force over a
distance R,

Ftidal ∝
M

D3R.

Therefore the ratio of force is

22



FSun′s tidal force

FMoon′s tidal force
= Msun/D

3
sun

Mmoon/D3
moon

= 27× 106

3903 = 0.46.

The Moon more strongly affects tides than the Sun.
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