
PHY321: Two-body problems and
Gravitational Forces

Morten Hjorth-Jensen1,2

1Department of Physics and Astronomy and Facility for Rare Ion Beams (FRIB), Michigan State University, USA
2Department of Physics, University of Oslo, Norway

Mar 19, 2021

Aims and Overarching Motivation
Monday. Definition of the two-body problem, rewriting the equations in
relative and center-of-mass coordinates

Reading suggestion: Taylor sections 8.2-8.3

Wednesday. Preparing the ground for the gravitional force and its solution
in two dimensions

Reading suggestion: Taylor chapter 8.4

Friday. Harmonic Oscillator example. Begin Kepler’s laws and computing
with classes.

Reading suggestion: Taylor section 8.5-8.6

Two-body Problems
Note: more text to be added.

The gravitational potential energy and forces involving two masses a and b
are

Vab = − Gmamb

|ra − rb|
, (1)

Fba = − Gmamb

|ra − rb|2
r̂ab,

r̂ab = rb − ra
|ra − rb|

.

Here G = 6.67 × 10−11 Nm2/kg2, and Fba is the force on b due to a. By
inspection, one can see that the force on b due to a and the force on a due to b

© 1999-2021, "Morten Hjorth-Jensen":"http://mhjgit.github.io/info/doc/web/". Released
under CC Attribution-NonCommercial 4.0 license

http://mhjgit.github.io/info/doc/web/

are equal and opposite. The net potential energy for a large number of masses
would be

V =
∑
a<b

Uab = 1
2
∑
a6=b

Vab. (2)

Relative and Center of Mass Motion
Thus far, we have considered the trajectory as if the force is centered around
a fixed point. For two bodies interacting only with one another, both masses
circulate around the center of mass. One might think that solutions would
become more complex when both particles move, but we will see here that
the problem can be reduced to one with a single body moving according to a
fixed force by expressing the trajectories for r1 and r2 into the center-of-mass
coordinate Rcm and the relative coordinate r,

Rcm ≡ m1r1 +m2r2

m1 +m2
, (3)

r ≡ r1 − r2.

Here, we assume the two particles interact only with one another, so F12 =
−F21 (where Fij is the force on i due to j. The equations of motion then become

R̈cm = 1
m1 +m2

{m1r̈1 +m2r̈2} (4)

= 1
m1 +m2

{F12 + F21} = 0.

r̈ = r̈1 − r̈2 =
(
F12

m1
− F21

m2

)
(5)

=
(

1
m1

+ 1
m2

)
F12.

The first expression simply states that the center of mass coordinate Rcm
moves at a fixed velocity. The second expression can be rewritten in terms of
the reduced mass µ.

µr̈ = F12, (6)
1
µ

= 1
m1

+ 1
m2

, µ = m1m2

m1 +m2
. (7)

Thus, one can treat the trajectory as a one-body problem where the reduced
mass is µ, and a second trivial problem for the center of mass. The reduced
mass is especially convenient when one is considering gravitational problems
because then

2

µr̈ = −Gm1m2

r2 r̂ (8)

= −GMµ

r2 r̂, M ≡ m1 +m2.

For the gravitational problem, the reduced mass then falls out and the
trajectory depends only on the total mass M .

The kinetic energy and momenta also have analogues in center-of-mass
coordinates. The total and relative momenta are

P ≡ p1 + p2 = MṘcm, (9)
q ≡ µṙ.

With these definitions, a little algebra shows that the kinetic energy becomes

K = 1
2m1|v1|2 + 1

2m2|v2|2 (10)

= 1
2M |Ṙcm|2 + 1

2µ|ṙ|
2

= P 2

2M + q2

2µ.

The standard strategy is to transform into the center of mass frame, then
treat the problem as one of a single particle of mass µ undergoing a force F12.
Scattering angles can also be expressed in this frame, then transformed into
the lab frame. In practice, one sees examples in the literature where dσ/dΩ
expressed in both the “center-of-mass” and in the “laboratory” frame.

Deriving Elliptical Orbits
Kepler’s laws state that a gravitational orbit should be an ellipse with the source
of the gravitational field at one focus. Deriving this is surprisingly messy. To do
this, we first use angular momentum conservation to transform the equations of
motion so that it is in terms of r and θ instead of r and t. The overall strategy
is to

1. Find equations of motion for r and t with no angle (θ) mentioned, i.e. d2r/dt2 =
· · · . Angular momentum conservation will be used, and the equation will
involve the angular momentum L.

2. Use angular momentum conservation to find an expression for θ̇ in terms
of r.

3. Use the chain rule to convert the equations of motions for r, an expres-
sion involving r, ṙ and r̈, to one involving r, dr/dθ and d2r/dθ2. This is
quitecomplicated because the expressions will also involve a substitution
u = 1/r so that one finds an expression in terms of u and θ.

3

4. Once u(θ) is found, you need to show that this can be converted to the
familiar form for an ellipse.

The equations of motion give

d

dt
r2 = d

dt
(x2 + y2) = 2xẋ+ 2yẏ = 2rṙ, (11)

ṙ = x

r
ẋ+ y

r
ẏ,

r̈ = x

r
ẍ+ y

r
ÿ + ẋ2 + ẏ2

r
− ṙ2

r
.

Recognizing that the numerator of the third term is the velocity squared,
and that it can be written in polar coordinates,

v2 = ẋ2 + ẏ2 = ṙ2 + r2θ̇2, (12)

one can write r̈ as

r̈ = Fx cos θ + Fy sin θ
m

+ ṙ2 + r2θ̇2

r
− ṙ2

r
(13)

= F

m
+ r2θ̇2

r

mr̈ = F + L2

mr3 .

This derivation used the fact that the force was radial, F = Fr = Fx cos θ +
Fy sin θ, and that angular momentum is L = mrvθ = mr2θ̇. The term L2/mr3 =
mv2/r behaves like an additional force. Sometimes this is referred to as a
centrifugal force, but it is not a force. Instead, it is the consequence of considering
the motion in a rotating (and therefore accelerating) frame.

Now, we switch to the particular case of an attractive inverse square force,
F = −α/r2, and show that the trajectory, r(θ), is an ellipse. To do this we
transform derivatives w.r.t. time to derivatives w.r.t. θ using the chain rule
combined with angular momentum conservation, θ̇ = L/mr2.

ṙ = dr

dθ
θ̇ = dr

dθ

L

mr2 , (14)

r̈ = d2r

dθ2 θ̇
2 + dr

dθ

(
d

dr

L

mr2

)
ṙ

= d2r

dθ2

(
L

mr2

)2
− 2dr

dθ

L

mr3 ṙ

= d2r

dθ2

(
L

mr2

)2
− 2
r

(
dr

dθ

)2(
L

mr2

)2

4

Equating the two expressions for r̈ in Eq.s (13) and (14) eliminates all the
derivatives w.r.t. time, and provides a differential equation with only derivatives
w.r.t. θ,

d2r

dθ2

(
L

mr2

)2
− 2
r

(
dr

dθ

)2(
L

mr2

)2
= F

m
+ L2

m2r3 , (15)

that when solved yields the trajectory, i.e. r(θ). Up to this point the expres-
sions work for any radial force, not just forces that fall as 1/r2.

The trick to simplifying this differential equation for the inverse square
problems is to make a substitution, u ≡ 1/r, and rewrite the differential equation
for u(θ).

r = 1/u, (16)
dr

dθ
= − 1

u2
du

dθ
,

d2r

dθ2 = 2
u3

(
du

dθ

)2
− 1
u2
d2u

dθ2 .

Plugging these expressions into Eq. (15) gives an expression in terms of u,
du/dθ, and d2u/dθ2. After some tedious algebra,

d2u

dθ2 = −u− Fm

L2u2 . (17)

For the attractive inverse square law force, F = −αu2,

d2u

dθ2 = −u+ mα

L2 . (18)

The solution has two arbitrary constants, A and θ0,

u = mα

L2 +A cos(θ − θ0), (19)

r = 1
(mα/L2) +A cos(θ − θ0) .

The radius will be at a minimum when θ = θ0 and at a maximum when
θ = θ0 + π. The constant A is related to the eccentricity of the orbit. When
A = 0 the radius is a constant r = L2/(mα), and the motion is circular. If one
solved the expression mv2/r = −α/r2 for a circular orbit, using the substitution
v = L/(mr), one would reproduce the expression r = L2/(mα).

The form describing the elliptical trajectory in Eq. (19) can be identified
as an ellipse with one focus being the center of the ellipse by considering the
definition of an ellipse as being the points such that the sum of the two distances
between the two foci are a constant. Making that distance 2D, the distance
between the two foci as 2a, and putting one focus at the origin,

5

2D = r +
√

(r cos θ − 2a)2 + r2 sin2 θ, (20)

4D2 + r2 − 4Dr = r2 + 4a2 − 4ar cos θ,

r = D2 − a2

D + a cos θ = 1
D/(D2 − a2)− a cos θ/(D2 − a2) .

By inspection, this is the same form as Eq. (19) with D/(D2− a2) = mα/L2

and a/(D2 − a2) = A.
Let us remind ourselves about what an ellipse is before we proceed.
import numpy as np
from matplotlib import pyplot as plt
from math import pi

u=1. #x-position of the center
v=0.5 #y-position of the center
a=2. #radius on the x-axis
b=1.5 #radius on the y-axis

t = np.linspace(0, 2*pi, 100)
plt.plot(u+a*np.cos(t) , v+b*np.sin(t))
plt.grid(color='lightgray',linestyle='--')
plt.show()

Effective or Centrifugal Potential
The total energy of a particle is

E = V (r) + 1
2mv

2
θ + 1

2mṙ
2 (21)

= V (r) + 1
2mr

2θ̇2 + 1
2mṙ

2

= V (r) + L2

2mr2 + 1
2mṙ

2.

The second term then contributes to the energy like an additional repulsive
potential. The term is sometimes referred to as the "centrifugal" potential, even
though it is actually the kinetic energy of the angular motion. Combined with
V (r), it is sometimes referred to as the "effective" potential,

Veff(r) = V (r) + L2

2mr2 . (22)

Note that if one treats the effective potential like a real potential, one would
expect to be able to generate an effective force,

Feff = − d

dr
V (r)− d

dr

L2

2mr2 (23)

= F (r) + L2

mr3 = F (r) +m
v2
⊥
r
,

6

which is indeed matches the form for mr̈ in Eq. (13), which included the
centrifugal force.

The following code plots this effective potential for a simple choice of pa-
rameters, with a standard gravitational potential −α/r. Here we have chosen
L = m = α = 1.

Common imports
import numpy as np
from math import *
import matplotlib.pyplot as plt

Deltax = 0.01
#set up arrays
xinitial = 0.3
xfinal = 5.0
alpha = 1.0 # spring constant
m = 1.0 # mass, you can change these
AngMom = 1.0 # The angular momentum
n = ceil((xfinal-xinitial)/Deltax)
x = np.zeros(n)
for i in range(n):

x[i] = xinitial+i*Deltax
V = np.zeros(n)
V = -alpha/x+0.5*AngMom*AngMom/(m*x*x)
Plot potential
fig, ax = plt.subplots()
ax.set_xlabel('r[m]')
ax.set_ylabel('V[J]')
ax.plot(x, V)
fig.tight_layout()
plt.show()

Gravitational force example. Using the above parameters, we can now
study the evolution of the system using for example the velocity Verlet method.
This is done in the code here for an initial radius equal to the minimum of the
potential well. We seen then that the radius is always the same and corresponds
to a circle (the radius is always constant).

Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt
import os

Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

7

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

Simple Gravitational Force -alpha/r

DeltaT = 0.01
#set up arrays
tfinal = 100.0
n = ceil(tfinal/DeltaT)
set up arrays for t, v and r
t = np.zeros(n)
v = np.zeros(n)
r = np.zeros(n)
Constants of the model, setting all variables to one for simplicity
alpha = 1.0
AngMom = 1.0 # The angular momentum
m = 1.0 # scale mass to one
c1 = AngMom*AngMom/(m*m)
c2 = AngMom*AngMom/m
rmin = (AngMom*AngMom/m/alpha)
Initial conditions
r0 = rmin
v0 = 0.0
r[0] = r0
v[0] = v0
Start integrating using the Velocity-Verlet method
for i in range(n-1):

Set up acceleration
a = -alpha/(r[i]**2)+c1/(r[i]**3)
update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a
anew = -alpha/(r[i+1]**2)+c1/(r[i+1]**3)
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
t[i+1] = t[i] + DeltaT
Plot position as function of time

fig, ax = plt.subplots(2,1)
ax[0].set_xlabel('time')
ax[0].set_ylabel('radius')
ax[0].plot(t,r)
ax[1].set_xlabel('time')
ax[1].set_ylabel('Velocity')
ax[1].plot(t,v)
save_fig("RadialGVV")
plt.show()

Changing the value of the initial position to a value where the energy is
positive, leads to an increasing radius with time, a so-called unbound orbit.
Choosing on the other hand an initial radius that corresponds to a negative
energy and different from the minimum value leads to a radius that oscillates
back and forth between two values.

8

Harmonic Oscillator in two dimensions. Consider a particle of mass m
in a 2-dimensional harmonic oscillator with potential

V = 1
2kr

2 = 1
2k(x2 + y2).

If the orbit has angular momentum L, we can find the radius and angular
velocity of the circular orbit as well as the b) the angular frequency of small
radial perturbations.

We consider the effective potential. The radius of a circular orbit is at the
minimum of the potential (where the effective force is zero). The potential is
plotted here with the parameters k = m = 0.1 and L = 1.0.

Common imports
import numpy as np
from math import *
import matplotlib.pyplot as plt

Deltax = 0.01
#set up arrays
xinitial = 0.5
xfinal = 3.0
k = 1.0 # spring constant
m = 1.0 # mass, you can change these
AngMom = 1.0 # The angular momentum
n = ceil((xfinal-xinitial)/Deltax)
x = np.zeros(n)
for i in range(n):

x[i] = xinitial+i*Deltax
V = np.zeros(n)
V = 0.5*k*x*x+0.5*AngMom*AngMom/(m*x*x)
Plot potential
fig, ax = plt.subplots()
ax.set_xlabel('r[m]')
ax.set_ylabel('V[J]')
ax.plot(x, V)
fig.tight_layout()
plt.show()

Veff = 1
2kr

2 + L2

2mr2

The effective potential looks like that of a harmonic oscillator for large r, but
for small r, the centrifugal potential repels the particle from the origin. The
combination of the two potentials has a minimum for at some radius rmin.

0 = krmin −
L2

mr3
min

,

rmin =
(
L2

mk

)1/4

,

θ̇ = L

mr2
min

=
√
k/m.

9

For particles at rmin with ṙ = 0, the particle does not accelerate and r stays
constant, i.e. a circular orbit. The radius of the circular orbit can be adjusted
by changing the angular momentum L.

For the above parameters this minimum is at rmin = 1.
Now consider small vibrations about rmin. The effective spring constant is

the curvature of the effective potential.

keff = d2

dr2Veff(r)
∣∣∣∣
r=rmin

= k + 3L2

mr4
min

= 4k,
ω =

√
keff/m = 2

√
k/m = 2θ̇.

Because the radius oscillates with twice the angular frequency, the orbit
has two places where r reaches a minimum in one cycle. This differs from the
inverse-square force where there is one minimum in an orbit. One can show that
the orbit for the harmonic oscillator is also elliptical, but in this case the center
of the potential is at the center of the ellipse, not at one of the foci.

The solution is also simple to write down exactly in Cartesian coordinates.
The x and y equations of motion separate,

ẍ = −kx,
ÿ = −ky.

The general solution can be expressed as

x = A cosω0t+B sinω0t,

y = C cosω0t+D sinω0t.

The code here finds the solution for x and y using the code we developed in
homework 5 and 6 and the midterm. Note that this code is tailored to run in
Cartesian coordinates. There is thus no angular momentum dependent term.

Here we have chose initial conditions that correspond to the minimum of the
effective potential rmin. We have chosen x0 = rmin and y0 = 0. Similarly, we use
the centripetal acceleration to determine the initial velocity so that we have a
circular motion (see back to the last question of the midterm). This means that
we set the centripetal acceleration v2/r equal to the force from the harmonic
oscillator −kr. Taking the magnitude of r we have then v2/r = k/mr, which
gives v = ±ω0r.

Since the code here solves the equations of motion in cartesian coordinates
and the harmonic oscillator potential leads to forces in the x- and y-directions
that are decoupled, we have to select the initial velocities and positions so that
we don’t get that for example y(t) = 0.

We set x0 to be different from zero and vy0 to be different from zero.

10

DeltaT = 0.001
#set up arrays
tfinal = 10.0
n = ceil(tfinal/DeltaT)
set up arrays
t = np.zeros(n)
v = np.zeros((n,2))
r = np.zeros((n,2))
radius = np.zeros(n)
Constants of the model
k = 1.0 # spring constant
m = 1.0 # mass, you can change these
omega02 = k/m # Frequency
AngMom = 1.0 # The angular momentum
Potential minimum
rmin = (AngMom*AngMom/k/m)**0.25
Initial conditions as compact 2-dimensional arrays, x0=rmin and y0 = 0
x0 = rmin; y0= 0.0
r0 = np.array([x0,y0])
vy0 = sqrt(omega02)*rmin; vx0 = 0.0
v0 = np.array([vx0,vy0])
r[0] = r0
v[0] = v0
Start integrating using the Velocity-Verlet method
for i in range(n-1):

Set up the acceleration
a = -r[i]*omega02
update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a
anew = -r[i+1]*omega02
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
t[i+1] = t[i] + DeltaT

Plot position as function of time
radius = np.sqrt(r[:,0]**2+r[:,1]**2)
fig, ax = plt.subplots(3,1)
ax[0].set_xlabel('time')
ax[0].set_ylabel('radius squared')
ax[0].plot(t,r[:,0]**2+r[:,1]**2)
ax[1].set_xlabel('time')
ax[1].set_ylabel('x position')
ax[1].plot(t,r[:,0])
ax[2].set_xlabel('time')
ax[2].set_ylabel('y position')
ax[2].plot(t,r[:,1])

fig.tight_layout()
save_fig("2DimHOVV")
plt.show()

We see that the radius (to within a given error), we obtain a constant radius.
The following code shows first how we can solve this problem using the radial

degrees of freedom only. Here we need to add the explicit centrifugal barrier.
Note that the variable r depends only on time. There is no x and y directions
since we have transformed the equations to polar coordinates.

DeltaT = 0.01
#set up arrays
tfinal = 10.0
n = ceil(tfinal/DeltaT)

11

set up arrays for t, v and r
t = np.zeros(n)
v = np.zeros(n)
r = np.zeros(n)
E = np.zeros(n)
Constants of the model
AngMom = 1.0 # The angular momentum
m = 1.0
k = 1.0
omega02 = k/m
c1 = AngMom*AngMom/(m*m)
c2 = AngMom*AngMom/m
rmin = (AngMom*AngMom/k/m)**0.25
Initial conditions
r0 = rmin
v0 = 0.0
r[0] = r0
v[0] = v0
E[0] = 0.5*m*v0*v0+0.5*k*r0*r0+0.5*c2/(r0*r0)
Start integrating using the Velocity-Verlet method
for i in range(n-1):

Set up acceleration
a = -r[i]*omega02+c1/(r[i]**3)
update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a
anew = -r[i+1]*omega02+c1/(r[i+1]**3)
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
t[i+1] = t[i] + DeltaT
E[i+1] = 0.5*m*v[i+1]*v[i+1]+0.5*k*r[i+1]*r[i+1]+0.5*c2/(r[i+1]*r[i+1])
Plot position as function of time

fig, ax = plt.subplots(2,1)
ax[0].set_xlabel('time')
ax[0].set_ylabel('radius')
ax[0].plot(t,r)
ax[1].set_xlabel('time')
ax[1].set_ylabel('Energy')
ax[1].plot(t,E)
save_fig("RadialHOVV")
plt.show()

With some work using double angle formulas, one can calculate

r2 = x2 + y2

= (A2 + C2) cos2(ω0t) + (B2 +D2) sin2 ω0t+ (AB + CD) cos(ω0t) sin(ω0t)
= α+ β cos 2ω0t+ γ sin 2ω0t,

α = A2 +B2 + C2 +D2

2 , β = A2 −B2 + C2 −D2

2 , γ = AB + CD,

r2 = α+ (β2 + γ2)1/2 cos(2ω0t− δ), δ = arctan(γ/β),

and see that radius oscillates with frequency 2ω0. The factor of two comes
because the oscillation x = A cosω0t has two maxima for x2, one at t = 0 and
one a half period later.

12

Stability of Orbits
The effective force can be extracted from the effective potential, Veff . Beginning
from the equations of motion, Eq. (11), for r,

mr̈ = F + L2

mr3 (24)

= Feff

= −∂rVeff ,

Feff = −∂r
[
V (r) + (L2/2mr2)

]
.

For a circular orbit, the radius must be fixed as a function of time, so one
must be at a maximum or a minimum of the effective potential. However, if one
is at a maximum of the effective potential the radius will be unstable. For the
attractive Coulomb force the effective potential will be dominated by the −α/r
term for large r because the centrifugal part falls off more quickly, ∼ 1/r2. At
low r the centrifugal piece wins and the effective potential is repulsive. Thus,
the potential must have a minimum somewhere with negative potential. The
circular orbits are then stable to perturbation.

The effective potential is sketched for two cases, a 1/r attractive potential
and a 1/r3 attractive potential. The 1/r case has a stable minimum, whereas
the circular orbit in the 1/r3 case is unstable.

If one considers a potential that falls as 1/r3, the situation is reversed and
the point where ∂rV disappears will be a local maximum rather than a local
minimum. Fig to come here with code

The repulsive centrifugal piece dominates at large r and the attractive
Coulomb piece wins out at small r. The circular orbit is then at a maximum
of the effective potential and the orbits are unstable. It is the clear that for
potentials that fall as rn, that one must have n > −2 for the orbits to be stable.

Consider a potential V (r) = βr. For a particle of mass m with angular
momentum L, find the angular frequency of a circular orbit. Then find the
angular frequency for small radial perturbations.

For the circular orbit you search for the position rmin where the effective
potential is minimized,

∂r

{
βr + L2

2mr2

}
= 0,

β = L2

mr3
min

,

rmin =
(
L2

βm

)1/3

,

θ̇ = L

mr2
min

= β2/3

(mL)1/3

13

Now, we can find the angular frequency of small perturbations about the
circular orbit. To do this we find the effective spring constant for the effective
potential,

keff = ∂2
r Veff |rmin

= 3L2

mr4
min

,

ω =
√
keff

m

= β2/3

(mL)1/3

√
3.

If the two frequencies, θ̇ and ω, differ by an integer factor, the orbit’s trajectory
will repeat itself each time around. This is the case for the inverse-square force,
ω = θ̇, and for the harmonic oscillator, ω = 2θ̇. In this case, ω =

√
3θ̇, and the

angles at which the maxima and minima occur change with each orbit.

Code example with gravitional force. The code example here is meant to
illustrate how we can make a plot of the final orbit. We solve the equations in
polar coordinates (the example here uses the minimum of the potential as initial
value) and then we transform back to cartesian coordinates and plot x versus y.
We see that we get a perfect circle when we place ourselves at the minimum of
the potential energy, as expected.

Simple Gravitational Force -alpha/r

DeltaT = 0.01
#set up arrays
tfinal = 8.0
n = ceil(tfinal/DeltaT)
set up arrays for t, v and r
t = np.zeros(n)
v = np.zeros(n)
r = np.zeros(n)
phi = np.zeros(n)
x = np.zeros(n)
y = np.zeros(n)
Constants of the model, setting all variables to one for simplicity
alpha = 1.0
AngMom = 1.0 # The angular momentum
m = 1.0 # scale mass to one
c1 = AngMom*AngMom/(m*m)
c2 = AngMom*AngMom/m
rmin = (AngMom*AngMom/m/alpha)
Initial conditions, place yourself at the potential min
r0 = rmin
v0 = 0.0 # starts at rest
r[0] = r0
v[0] = v0
phi[0] = 0.0
Start integrating using the Velocity-Verlet method

14

for i in range(n-1):
Set up acceleration
a = -alpha/(r[i]**2)+c1/(r[i]**3)
update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a
anew = -alpha/(r[i+1]**2)+c1/(r[i+1]**3)
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
t[i+1] = t[i] + DeltaT
phi[i+1] = t[i+1]*c2/(r0**2)

Find cartesian coordinates for easy plot
x = r*np.cos(phi)
y = r*np.sin(phi)
fig, ax = plt.subplots(3,1)
ax[0].set_xlabel('time')
ax[0].set_ylabel('radius')
ax[0].plot(t,r)
ax[1].set_xlabel('time')
ax[1].set_ylabel('Angle $\cos{\phi}$')
ax[1].plot(t,np.cos(phi))
ax[2].set_ylabel('y')
ax[2].set_xlabel('x')
ax[2].plot(x,y)

save_fig("Phasespace")
plt.show()

Try to change the initial value for r and see what kind of orbits you get. In
order to test different energies, it can be useful to look at the plot of the effective
potential discussed above.

However, for orbits different from a circle the above code would need modifi-
cations in order to allow us to display say an ellipse. For the latter, it is much
easier to run our code in cartesian coordinates, as done here. In this code we
test also energy conservation and see that it is conserved to numerical precision.
The code here is a simple extension of the code we developed for homework 4.

Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt

DeltaT = 0.01
#set up arrays
tfinal = 10.0
n = ceil(tfinal/DeltaT)
set up arrays
t = np.zeros(n)
v = np.zeros((n,2))
r = np.zeros((n,2))
E = np.zeros(n)
Constants of the model
m = 1.0 # mass, you can change these
alpha = 1.0
Initial conditions as compact 2-dimensional arrays
x0 = 0.5; y0= 0.
r0 = np.array([x0,y0])
v0 = np.array([0.0,1.0])
r[0] = r0

15

v[0] = v0
rabs = sqrt(sum(r[0]*r[0]))
E[0] = 0.5*m*(v[0,0]**2+v[0,1]**2)-alpha/rabs
Start integrating using the Velocity-Verlet method
for i in range(n-1):

Set up the acceleration
rabs = sqrt(sum(r[i]*r[i]))
a = -alpha*r[i]/(rabs**3)
update velocity, time and position using the Velocity-Verlet method
r[i+1] = r[i] + DeltaT*v[i]+0.5*(DeltaT**2)*a
rabs = sqrt(sum(r[i+1]*r[i+1]))
anew = -alpha*r[i+1]/(rabs**3)
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
E[i+1] = 0.5*m*(v[i+1,0]**2+v[i+1,1]**2)-alpha/rabs
t[i+1] = t[i] + DeltaT

Plot position as function of time
fig, ax = plt.subplots(3,1)
ax[0].set_ylabel('y')
ax[0].set_xlabel('x')
ax[0].plot(r[:,0],r[:,1])
ax[1].set_xlabel('time')
ax[1].set_ylabel('y position')
ax[1].plot(t,r[:,0])
ax[2].set_xlabel('time')
ax[2].set_ylabel('y position')
ax[2].plot(t,r[:,1])

fig.tight_layout()
save_fig("2DimGravity")
plt.show()
print(E)

16

