
PHY321: Time-dependent Forces and
Fourier Series

Morten Hjorth-Jensen1,2

1Department of Physics and Astronomy and Facility for Rare Ion Beams (FRIB), Michigan State University, USA
2Department of Physics, University of Oslo, Norway

Mar 13, 2021

Aims and Overarching Motivation
Driven oscillations and resonances with numerical examples.

Monday. Reading suggestion: Taylor sections 5.6-5.8.

Wednesday. Oscillations and resonances with examples like the mathematical
pendulum.

Reading suggestion: Taylor chapter 5.

Friday. Summary oscillations and first midterm and if we get time begin
two-body problems. We will drop the discussion on Fourier series.

Reading suggestion: Taylor section 8.2.

Numerical Studies of Driven Oscillations
Solving the problem of driven oscillations numerically gives us much more
flexibility to study different types of driving forces. We can reuse our earlier
code by simply adding a driving force. If we stay in the x-direction only this
can be easily done by adding a term Fext(x, t). Note that we have kept it rather
general here, allowing for both a spatial and a temporal dependence.

Before we dive into the code, we need to briefly remind ourselves about the
equations we started with for the case with damping, namely

m
d2x

dt2
+ b

dx

dt
+ kx(t) = 0,

with no external force applied to the system.
Let us now for simplicty assume that our external force is given by

© 1999-2021, "Morten Hjorth-Jensen":"http://mhjgit.github.io/info/doc/web/". Released
under CC Attribution-NonCommercial 4.0 license

http://mhjgit.github.io/info/doc/web/

Fext(t) = F0 cos (ωt),

where F0 is a constant (what is its dimension?) and ω is the frequency of the
applied external driving force. Small question: would you expect energy to be
conserved now?

Introducing the external force into our lovely differential equation and dividing
by m and introducing ω2

0 =
√
k/m we have

d2x

dt2
+ b

m

dx

dt
+ ω2

0x(t) = F0

m
cos (ωt),

Thereafter we introduce a dimensionless time τ = tω0 and a dimensionless
frequency ω̃ = ω/ω0. We have then

d2x

dτ2 + b

mω0

dx

dτ
+ x(τ) = F0

mω2
0

cos (ω̃τ),

Introducing a new amplitude F̃ = F0/(mω2
0) (check dimensionality again) we

have
d2x

dτ2 + b

mω0

dx

dτ
+ x(τ) = F̃ cos (ω̃τ).

Our final step, as we did in the case of various types of damping, is to define
γ = b/(2mω0) and rewrite our equations as

d2x

dτ2 + 2γ dx
dτ

+ x(τ) = F̃ cos (ω̃τ).

This is the equation we will code below using the Euler-Cromer method.

Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt
import os

Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)

def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)

2

def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')

from pylab import plt, mpl
plt.style.use('seaborn')
mpl.rcParams['font.family'] = 'serif'

DeltaT = 0.001
#set up arrays
tfinal = 20 # in dimensionless time
n = ceil(tfinal/DeltaT)
set up arrays for t, v, and x
t = np.zeros(n)
v = np.zeros(n)
x = np.zeros(n)
Initial conditions as one-dimensional arrays of time
x0 = 1.0
v0 = 0.0
x[0] = x0
v[0] = v0
gamma = 0.2
Omegatilde = 0.5
Ftilde = 1.0
Start integrating using Euler-Cromer's method
for i in range(n-1):

Set up the acceleration
Here you could have defined your own function for this
a = -2*gamma*v[i]-x[i]+Ftilde*cos(t[i]*Omegatilde)
update velocity, time and position
v[i+1] = v[i] + DeltaT*a
x[i+1] = x[i] + DeltaT*v[i+1]
t[i+1] = t[i] + DeltaT

Plot position as function of time
fig, ax = plt.subplots()
ax.set_ylabel('x[m]')
ax.set_xlabel('t[s]')
ax.plot(t, x)
fig.tight_layout()
save_fig("ForcedBlockEulerCromer")
plt.show()

In the above example we have focused on the Euler-Cromer method. This
method has a local truncation error which is proportional to ∆t2 and thereby
a global error which is proportional to ∆t. We can improve this by using the
Runge-Kutta family of methods. The widely popular Runge-Kutta to fourth
order or just RK4 has indeed a much better truncation error. The RK4 method
has a global error which is proportional to ∆t.

Let us revisit this method and see how we can implement it for the above
example.

3

Differential Equations, Runge-Kutta methods
Runge-Kutta (RK) methods are based on Taylor expansion formulae, but yield
in general better algorithms for solutions of an ordinary differential equation.
The basic philosophy is that it provides an intermediate step in the computation
of yi+1.

To see this, consider first the following definitions

dy

dt
= f(t, y), (1)

and
y(t) =

∫
f(t, y)dt, (2)

and
yi+1 = yi +

∫ ti+1

ti

f(t, y)dt. (3)

To demonstrate the philosophy behind RK methods, let us consider the
second-order RK method, RK2. The first approximation consists in Taylor
expanding f(t, y) around the center of the integration interval ti to ti+1, that
is, at ti + h/2, h being the step. Using the midpoint formula for an integral,
defining y(ti + h/2) = yi+1/2 and ti + h/2 = ti+1/2, we obtain∫ ti+1

ti

f(t, y)dt ≈ hf(ti+1/2, yi+1/2) +O(h3). (4)

This means in turn that we have

yi+1 = yi + hf(ti+1/2, yi+1/2) +O(h3). (5)

However, we do not know the value of yi+1/2. Here comes thus the next
approximation, namely, we use Euler’s method to approximate yi+1/2. We have
then

y(i+1/2) = yi + h

2
dy

dt
= y(ti) + h

2 f(ti, yi). (6)

This means that we can define the following algorithm for the second-order
Runge-Kutta method, RK2.

k1 = hf(ti, yi), (7)

and

k2 = hf(ti+1/2, yi + k1/2), (8)

with the final value

yi+i ≈ yi + k2 +O(h3). (9)

4

The difference between the previous one-step methods is that we now need
an intermediate step in our evaluation, namely ti + h/2 = t(i+1/2) where we
evaluate the derivative f . This involves more operations, but the gain is a better
stability in the solution.

The fourth-order Runge-Kutta, RK4, has the following algorithm

k1 = hf(ti, yi) k2 = hf(ti + h/2, yi + k1/2)

and

k3 = hf(ti + h/2, yi + k2/2) k4 = hf(ti + h, yi + k3)

with the final result

yi+1 = yi + 1
6 (k1 + 2k2 + 2k3 + k4) .

Thus, the algorithm consists in first calculating k1 with ti, y1 and f as inputs.
Thereafter, we increase the step size by h/2 and calculate k2, then k3 and finally
k4. The global error goes as O(h4).

However, at this stage, if we keep adding different methods in our main
program, the code will quickly become messy and ugly. Before we proceed thus,
we will now introduce functions that enbody the various methods for solving
differential equations. This means that we can separate out these methods in
own functions and files (and later as classes and more generic functions) and
simply call them when needed. Similarly, we could easily encapsulate various
forces or other quantities of interest in terms of functions. To see this, let us
bring up the code we developed above for the simple sliding block, but now only
with the simple forward Euler method. We introduce two functions, one for the
simple Euler method and one for the force.

Note that here the forward Euler method does not know the specific force
function to be called. It receives just an input the name. We can easily change
the force by adding another function.

def ForwardEuler(v,x,t,n,Force):
for i in range(n-1):

v[i+1] = v[i] + DeltaT*Force(v[i],x[i],t[i])
x[i+1] = x[i] + DeltaT*v[i]
t[i+1] = t[i] + DeltaT

def SpringForce(v,x,t):
note here that we have divided by mass and we return the acceleration

return -2*gamma*v-x+Ftilde*cos(t*Omegatilde)

It is easy to add a new method like the Euler-Cromer
def ForwardEulerCromer(v,x,t,n,Force):

for i in range(n-1):
a = Force(v[i],x[i],t[i])
v[i+1] = v[i] + DeltaT*a
x[i+1] = x[i] + DeltaT*v[i+1]
t[i+1] = t[i] + DeltaT

5

and the Velocity Verlet method (be careful with time-dependence here, it is not
an ideal method for non-conservative forces))

def VelocityVerlet(v,x,t,n,Force):
for i in range(n-1):

a = Force(v[i],x[i],t[i])
x[i+1] = x[i] + DeltaT*v[i]+0.5*a*DeltaT*DeltaT
anew = Force(v[i],x[i+1],t[i+1])
v[i+1] = v[i] + 0.5*DeltaT*(a+anew)
t[i+1] = t[i] + DeltaT

Finally, we can now add the Runge-Kutta2 method via a new function
def RK2(v,x,t,n,Force):

for i in range(n-1):
Setting up k1

k1x = DeltaT*v[i]
k1v = DeltaT*Force(v[i],x[i],t[i])

Setting up k2
vv = v[i]+k1v*0.5
xx = x[i]+k1x*0.5
k2x = DeltaT*vv
k2v = DeltaT*Force(vv,xx,t[i]+DeltaT*0.5)

Final result
x[i+1] = x[i]+k2x
v[i+1] = v[i]+k2v
t[i+1] = t[i]+DeltaT

Finally, we can now add the Runge-Kutta2 method via a new function

def RK4(v,x,t,n,Force):
for i in range(n-1):

Setting up k1
k1x = DeltaT*v[i]
k1v = DeltaT*Force(v[i],x[i],t[i])

Setting up k2
vv = v[i]+k1v*0.5
xx = x[i]+k1x*0.5
k2x = DeltaT*vv
k2v = DeltaT*Force(vv,xx,t[i]+DeltaT*0.5)

Setting up k3
vv = v[i]+k2v*0.5
xx = x[i]+k2x*0.5
k3x = DeltaT*vv
k3v = DeltaT*Force(vv,xx,t[i]+DeltaT*0.5)

Setting up k4
vv = v[i]+k3v
xx = x[i]+k3x
k4x = DeltaT*vv
k4v = DeltaT*Force(vv,xx,t[i]+DeltaT)

Final result
x[i+1] = x[i]+(k1x+2*k2x+2*k3x+k4x)/6.
v[i+1] = v[i]+(k1v+2*k2v+2*k3v+k4v)/6.
t[i+1] = t[i] + DeltaT

The Runge-Kutta family of methods are particularly useful when we have a
time-dependent acceleration. If we have forces which depend only the spatial
degrees of freedom (no velocity and/or time-dependence), then energy conserving
methods like the Velocity Verlet or the Euler-Cromer method are preferred.

6

As soon as we introduce an explicit time-dependence and/or add dissipitave
forces like friction or air resistance, then methods like the family of Runge-Kutta
methods are well suited for this. The code below uses the Runge-Kutta4 methods.

DeltaT = 0.001
#set up arrays
tfinal = 20 # in dimensionless time
n = ceil(tfinal/DeltaT)
set up arrays for t, v, and x
t = np.zeros(n)
v = np.zeros(n)
x = np.zeros(n)
Initial conditions (can change to more than one dim)
x0 = 1.0
v0 = 0.0
x[0] = x0
v[0] = v0
gamma = 0.2
Omegatilde = 0.5
Ftilde = 1.0
Start integrating using the RK4 method
Note that we define the force function as a SpringForce
RK4(v,x,t,n,SpringForce)

Plot position as function of time
fig, ax = plt.subplots()
ax.set_ylabel('x[m]')
ax.set_xlabel('t[s]')
ax.plot(t, x)
fig.tight_layout()
save_fig("ForcedBlockRK4")
plt.show()

Example: The classical pendulum and scaling the equations
Let us end our discussion of oscillations with another classical case, the pendulum.

The angular equation of motion of the pendulum is given by Newton’s
equation and with no external force it reads

ml
d2θ

dt2
+mgsin(θ) = 0, (10)

with an angular velocity and acceleration given by

v = l
dθ

dt
, (11)

and
a = l

d2θ

dt2
. (12)

We do however expect that the motion will gradually come to an end due a
viscous drag torque acting on the pendulum. In the presence of the drag, the
above equation becomes

ml
d2θ

dt2
+ ν

dθ

dt
+mgsin(θ) = 0, (13)

7

where ν is now a positive constant parameterizing the viscosity of the medium
in question. In order to maintain the motion against viscosity, it is necessary to
add some external driving force. We choose here a periodic driving force. The
last equation becomes then

ml
d2θ

dt2
+ ν

dθ

dt
+mgsin(θ) = Asin(ωt), (14)

with A and ω two constants representing the amplitude and the angular frequency
respectively. The latter is called the driving frequency.

We define
ω0 =

√
g/l,

the so-called natural frequency and the new dimensionless quantities

t̂ = ω0t,

with the dimensionless driving frequency

ω̂ = ω

ω0
,

and introducing the quantity Q, called the quality factor,

Q = mg

ω0ν
,

and the dimensionless amplitude

Â = A

mg

More on the Pendulum
We have

d2θ

dt̂2
+ 1
Q

dθ

dt̂
+ sin(θ) = Âcos(ω̂t̂).

This equation can in turn be recast in terms of two coupled first-order differential
equations as follows

dθ

dt̂
= v̂,

and
dv̂

dt̂
= − v̂

Q
− sin(θ) + Âcos(ω̂t̂).

These are the equations to be solved. The factor Q represents the number
of oscillations of the undriven system that must occur before its energy is
significantly reduced due to the viscous drag. The amplitude Â is measured
in units of the maximum possible gravitational torque while ω̂ is the angular
frequency of the external torque measured in units of the pendulum’s natural
frequency.

8

The Pendulum code
We need to define a new force, which we simply call the pendulum force. The only
thing which changes from our previous spring-force problem is the non-linearity
introduced by angle θ due to the sin θ term. Here we have kept a generic variable
x instead. This makes our codes very similar.

def PendulumForce(v,x,t):
note here that we have divided by mass and we return the acceleration

return -gamma*v-sin(x)+Ftilde*cos(t*Omegatilde)

Setting up the various variables and running the code
DeltaT = 0.001
#set up arrays
tfinal = 20 # in years
n = ceil(tfinal/DeltaT)
set up arrays for t, v, and x
t = np.zeros(n)
v = np.zeros(n)
theta = np.zeros(n)
Initial conditions (can change to more than one dim)
theta0 = 1.0
v0 = 0.0
theta[0] = theta0
v[0] = v0
gamma = 0.2
Omegatilde = 0.5
Ftilde = 1.0
Start integrating using the RK4 method
Note that we define the force function as a PendulumForce
RK4(v,theta,t,n,PendulumForce)

Plot position as function of time
fig, ax = plt.subplots()
ax.set_ylabel('theta[radians]')
ax.set_xlabel('t[s]')
ax.plot(t, theta)
fig.tight_layout()
save_fig("PendulumRK4")
plt.show()

Principle of Superposition and Periodic Forces (Fourier Trans-
forms)
If one has several driving forces, F (t) =

∑
n Fn(t), one can find the particular

solution to each Fn, xpn(t), and the particular solution for the entire driving
force is

xp(t) =
∑
n

xpn(t). (15)

This is known as the principal of superposition. It only applies when the
homogenous equation is linear. If there were an anharmonic term such as x3 in the
homogenous equation, then when one summed various solutions, x = (

∑
n xn)2,

9

one would get cross terms. Superposition is especially useful when F (t) can be
written as a sum of sinusoidal terms, because the solutions for each sinusoidal
(sine or cosine) term is analytic, as we saw above.

Driving forces are often periodic, even when they are not sinusoidal. Period-
icity implies that for some time τ

F (t+ τ) = F (t). (16)

One example of a non-sinusoidal periodic force is a square wave. Many
components in electric circuits are non-linear, e.g. diodes, which makes many
wave forms non-sinusoidal even when the circuits are being driven by purely
sinusoidal sources.

The code here shows a typical example of such a square wave generated using
the functionality included in the scipy Python package. We have used a period
of τ = 0.2.

import numpy as np
import math
from scipy import signal
import matplotlib.pyplot as plt

number of points
n = 500
start and final times
t0 = 0.0
tn = 1.0
Period
t = np.linspace(t0, tn, n, endpoint=False)
SqrSignal = np.zeros(n)
SqrSignal = 1.0+signal.square(2*np.pi*5*t)
plt.plot(t, SqrSignal)
plt.ylim(-0.5, 2.5)
plt.show()

For the sinusoidal example studied in the previous week the period is τ =
2π/ω. However, higher harmonics can also satisfy the periodicity requirement.
In general, any force that satisfies the periodicity requirement can be expressed
as a sum over harmonics,

F (t) = f0

2 +
∑
n>0

fn cos(2nπt/τ) + gn sin(2nπt/τ). (17)

We can write down the answer for xpn(t), by substituting fn/m or gn/m for
F0/m. By writing each factor 2nπt/τ as nωt, with ω ≡ 2π/τ ,

F (t) = f0

2 +
∑
n>0

fn cos(nωt) + gn sin(nωt). (18)

The solutions for x(t) then come from replacing ω with nω for each term in
the particular solution,

10

xp(t) = f0

2k +
∑
n>0

αn cos(nωt− δn) + βn sin(nωt− δn), (19)

αn = fn/m√
((nω)2 − ω2

0) + 4β2n2ω2
,

βn = gn/m√
((nω)2 − ω2

0) + 4β2n2ω2
,

δn = tan−1
(

2βnω
ω2

0 − n2ω2

)
.

Because the forces have been applied for a long time, any non-zero damping
eliminates the homogenous parts of the solution, so one need only consider the
particular solution for each n.

The problem will considered solved if one can find expressions for the coef-
ficients fn and gn, even though the solutions are expressed as an infinite sum.
The coefficients can be extracted from the function F (t) by

fn = 2
τ

∫ τ/2

−τ/2
dt F (t) cos(2nπt/τ), (20)

gn = 2
τ

∫ τ/2

−τ/2
dt F (t) sin(2nπt/τ).

To check the consistency of these expressions and to verify Eq. (20), one can
insert the expansion of F (t) in Eq. (18) into the expression for the coefficients
in Eq. (20) and see whether

fn =? 2
τ

∫ τ/2

−τ/2
dt

{
f0

2 +
∑
m>0

fm cos(mωt) + gm sin(mωt)
}

cos(nωt).(21)

Immediately, one can throw away all the terms with gm because they convolute
an even and an odd function. The term with f0/2 disappears because cos(nωt)
is equally positive and negative over the interval and will integrate to zero. For
all the terms fm cos(mωt) appearing in the sum, one can use angle addition
formulas to see that cos(mωt) cos(nωt) = (1/2)(cos[(m+ n)ωt] + cos[(m− n)ωt].
This will integrate to zero unless m = n. In that case the m = n term gives∫ τ/2

−τ/2
dt cos2(mωt) = τ

2 , (22)

and

fn =? 2
τ

∫ τ/2

−τ/2
dt fn/2 (23)

= fn X.

11

The same method can be used to check for the consistency of gn.
Consider the driving force:

F (t) = At/τ, − τ/2 < t < τ/2, F (t+ τ) = F (t). (24)

Find the Fourier coefficients fn and gn for all n using Eq. (20).
Only the odd coefficients enter by symmetry, i.e. fn = 0. One can find gn

integrating by parts,

gn = 2
τ

∫ τ/2

−τ/2
dt sin(nωt)At

τ
(25)

u = t, dv = sin(nωt)dt, v = − cos(nωt)/(nω),

gn = −2A
nωτ2

∫ τ/2

−τ/2
dt cos(nωt) + 2A−t cos(nωt)

nωτ2

∣∣∣∣τ/2
−τ/2

.

The first term is zero because cos(nωt) will be equally positive and negative
over the interval. Using the fact that ωτ = 2π,

gn = − 2A
2nπ cos(nωτ/2) (26)

= − A

nπ
cos(nπ)

= A

nπ
(−1)n+1.

Fourier Series
More text will come here, chpater 5.7-5.8 of Taylor are discussed during the
lectures. The code here uses the Fourier series discussed in chapter 5.7 for a square
wave signal. The equations for the coefficients are are discussed in Taylor section
5.7, see Example 5.4. The code here visualizes the various approximations given
by Fourier series compared with a square wave with period T = 0.2, witth 0.1
and max value F = 2. We see that when we increase the number of components
in the Fourier series, the Fourier series approximation gets closes and closes to
the square wave signal.

import numpy as np
import math
from scipy import signal
import matplotlib.pyplot as plt

number of points
n = 500
start and final times
t0 = 0.0
tn = 1.0
Period
T =0.2

12

Max value of square signal
Fmax= 2.0
Width of signal
Width = 0.1
t = np.linspace(t0, tn, n, endpoint=False)
SqrSignal = np.zeros(n)
FourierSeriesSignal = np.zeros(n)
SqrSignal = 1.0+signal.square(2*np.pi*5*t+np.pi*Width/T)
a0 = Fmax*Width/T
FourierSeriesSignal = a0
Factor = 2.0*Fmax/np.pi
for i in range(1,500):

FourierSeriesSignal += Factor/(i)*np.sin(np.pi*i*Width/T)*np.cos(i*t*2*np.pi/T)
plt.plot(t, SqrSignal)
plt.plot(t, FourierSeriesSignal)
plt.ylim(-0.5, 2.5)
plt.show()

Solving differential equations with Fouries series
Material to be added.

Response to Transient Force
Consider a particle at rest in the bottom of an underdamped harmonic oscillator,
that then feels a sudden impulse, or change in momentum, I = F∆t at t = 0. This
increases the velocity immediately by an amount v0 = I/m while not changing
the position. One can then solve the trajectory by solving the equations with
initial conditions v0 = I/m and x0 = 0. This gives

x(t) = I

mω′
e−βt sinω′t, t > 0. (27)

Here, ω′ =
√
ω2

0 − β2. For an impulse Ii that occurs at time ti the trajectory
would be

x(t) = Ii
mω′

e−β(t−ti) sin[ω′(t− ti)]Θ(t− ti), (28)

where Θ(t− ti) is a step function, i.e. Θ(x) is zero for x < 0 and unity for
x > 0. If there were several impulses linear superposition tells us that we can
sum over each contribution,

x(t) =
∑
i

Ii
mω′

e−β(t−ti) sin[ω′(t− ti)]Θ(t− ti) (29)

Now one can consider a series of impulses at times separated by ∆t, where
each impulse is given by Fi∆t. The sum above now becomes an integral,

13

x(t) =
∫ ∞
−∞

dt′ F (t′)e
−β(t−t′) sin[ω′(t− t′)]

mω′
Θ(t− t′) (30)

=
∫ ∞
−∞

dt′ F (t′)G(t− t′),

G(∆t) = e−β∆t sin[ω′∆t]
mω′

Θ(∆t)

The quantity e−β(t−t′) sin[ω′(t− t′)]/mω′Θ(t− t′) is called a Green’s function,
G(t− t′). It describes the response at t due to a force applied at a time t′, and is
a function of t− t′. The step function ensures that the response does not occur
before the force is applied. One should remember that the form for G would
change if the oscillator were either critically- or over-damped.

When performing the integral in Eq. (30) one can use angle addition formulas
to factor out the part with the t′ dependence in the integrand,

x(t) = 1
mω′

e−βt [Ic(t) sin(ω′t)− Is(t) cos(ω′t)] , (31)

Ic(t) ≡
∫ t

−∞
dt′ F (t′)eβt

′
cos(ω′t′),

Is(t) ≡
∫ t

−∞
dt′ F (t′)eβt

′
sin(ω′t′).

If the time t is beyond any time at which the force acts, F (t′ > t) = 0, the
coefficients Ic and Is become independent of t.

Consider an undamped oscillator (β → 0), with characteristic frequency ω0
and mass m, that is at rest until it feels a force described by a Gaussian form,

F (t) = F0 exp
{
−t2

2τ2

}
.

For large times (t >> τ), where the force has died off, find x(t).
Solve for the coefficients Ic and Is in Eq. (31). Because the Gaussian is an even
function, Is = 0, and one need only solve for Ic,

Ic = F0

∫ ∞
−∞

dt′ e−t
′2/(2τ2) cos(ω0t

′)

= <F0

∫ ∞
−∞

dt′ e−t
′2/(2τ2)eiω0t

′

= <F0

∫ ∞
−∞

dt′ e−(t′−iω0τ
2)2/(2τ2)e−ω

2
0τ

2/2

= F0τ
√

2πe−ω
2
0τ

2/2.

14

The third step involved completing the square, and the final step used the
fact that the integral

∫ ∞
−∞

dx e−x
2/2 =

√
2π.

To see that this integral is true, consider the square of the integral, which
you can change to polar coordinates,

I =
∫ ∞
−∞

dx e−x
2/2

I2 =
∫ ∞
−∞

dxdy e−(x2+y2)/2

= 2π
∫ ∞

0
rdr e−r

2/2

= 2π.

Finally, the expression for x from Eq. (31) is

x(t >> τ) = F0τ

mω0

√
2πe−ω

2
0τ

2/2 sin(ω0t).

15

