
Second week

Data Analysis and Machine Learning

May 29, 2020

Regression examples, from linear regression, via decision
trees and various forests to neural networks
The main aim of this project is to study some specific regression problems,
starting with the regression algorithms studied in homework set 3 (exercise 2
in particular). We will include decision trees, random forests and eventually
boosting methods and neural network with tensorflow (feel free however to
write your own code).

The case we encounter here is the so-called Ising model for our training data
and we will focus on supervised training. We will follow closely the recent article
of Mehta et al, arXiv 1803.08823. This article stands out as an excellent review
on machine learning (ML) algorithms. The added benefit is that each figure and
model presented in this article is accompanied by its jupyter notebook. This
means that we can start using these and compare with our own results.

You can also look up the Regression slides for a discussion of the Ising model
(scroll down to the end).

Alternatively, you can replace the Ising thorughout the exercises with the
nuclear binding energies. The choice is yours. Or if you have other data sets
suitable for regression, feel free to use those.

What follows here is however a discussion of the Ising model. The nuclear
binding energies were discussed during the lectures.

With the abovementioned configurations we will determine, using first various
regression methods, the value of the coupling constant for the energy of the
one-dimensional Ising model. We will mainly use scikit-learn or tensorflow
or other Python packages such as keras or other.

Feel free to use the notebooks to benchmark your code.

Part a): Producing the data for the one-dimensional Ising model.
The model we will employ in our studies is the so-called Ising model. Together
with models like the Potts model and similar so-called lattice models, the Ising
model has been widely studied in mathematics (in statistics in particular),
physics, life science, chemistry and even in the social sciences in order to model
social behavior. It is a simple binary value system where the variables of the

https://arxiv.org/abs/1803.08823
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://compphysics.github.io/MachineLearningMSU-FRIB2020/doc/pub/Regression/html/Regression.html
https://en.wikipedia.org/wiki/Ising_model
https://en.wikipedia.org/wiki/Potts_model
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.062402
https://www.springer.com/gp/book/9781461420316
https://www.springer.com/gp/book/9781461420316


model (spins often in physics) can take two values only, for example ±1 or 0 and
1. The system exhibits a phase transition in two or higher dimensions and the
first person to find the analytical expressions for various expectation values was
the Norwegian chemist Lars Onsager (Nobel prize in chemistry) after a tour de
force mathematics exercise.

In our discussions here we will stay with a physicist’s approach and call the
variables for spin. You could replace this with any other type of binary variables,
ranging from a two political parties to blue and red spheres. In its simplest form
we define the energy of the system as

E = −J
N∑

<kl>

sksl,

with sk = ±1, N is the total number of spins, J is a coupling constant expressing
the strength of the interaction between neighboring spins.

The symbol < kl > indicates that we sum over nearest neighbors only. Notice
that for J > 0 it is energetically favorable for neighboring spins to be aligned.
This feature leads to, at low enough temperatures, a cooperative phenomenon
called spontaneous magnetization. That is, through interactions between nearest
neighbors, a given magnetic moment can influence the alignment of spins that
are separated from the given spin by a macroscopic distance. These long range
correlations between spins are associated with a long-range order in which the
lattice has a net magnetization in the absence of a magnetic field.

We start by considering the one-dimensional Ising model with nearest neighbor
interactions. This model does not exhibit any phase transition.

Consider the 1D Ising model with nearest-neighbor interactions

E[ŝ] = −J
N∑

j=1
sjsj+1,

on a chain of length N with so-called periodic boundary conditions and
Sj = ±1 Ising spin variables. In one dimension, this model has no phase
transition at finite temperature.

In the Python code below we generate, with a coupling coefficient set to
J = 1, a large number of spin configurations say 10000 as shown in the code
below. It means that our data will be a set of i = 1 . . . n points of the form
{(E[si], si)}. Our task is to find the value of J from the data set using linear
regression.

Here is the Python code you need to generate the training data, see also the
notebook of Mehta et al.

import numpy as np import scipy.sparse as sp np.random.seed(12)
import warnings Comment this to turn on warnings warnings.filterwarnings(’ignore’)
define Ising model aprams system size L=40
create 10000 random Ising states states=np.random.choice([-1, 1], size=(10000,L))

2

https://en.wikipedia.org/wiki/Lars_Onsager
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVI-linreg_ising.html


def isingenergies(states, L) : ”””ThisfunctioncalculatestheenergiesofthestatesinthennIsingHamiltonian”””J =
np.zeros((L,L), )foriinrange(L) : J [i, (i+1)computeenergiesE = np.einsum(′...i, ij, ...j− >
...′, states, J, states)

return E calculate Ising energies energies=isingenergies(states, L)
We can now recast the problem as a linear regression model using our codes

from homework set 3 (exercise 2 in particular). The way we are going to build
our model mimicks the way we could think of finding say the gravitional constant
for the graviational force between two planets. In the absence of any prior
knowledge, one sensible choice is the all-to-all Ising model

Emodel[si] = −
N∑

j=1

N∑
k=1

Jj,ks
i
js

i
k.

Here i represents a particular spin configuration (one of the possible n
configurations we generated with the code above).

This model is uniquely defined by the non-local coupling strengths Jjk which
we want to learn. The model is linear in J which makes it possible to use linear
regression.

To apply linear regression, we recast this model in the form

Ei
model ≡ Xi · J,

where the vectors Xi represent all two-body interactions {si
js

i
k}N

j,k=1, and the
index i runs over the samples in the data set. To make the analogy complete, we
can also represent the dot product by a single index p = {j, k}, i.e. Xi ·J = Xi

pJp.
Note that the regression model does not include the minus sign, so we expect to
learn negative J ’s.

Part b): Estimating the coupling constant of the one-dimensional
Ising model using linear regression. We start with the one-dimensional
Ising model and use the data we have generated with J = 1 in the previous
point.

Use linear regression, Lasso and Ridge regression as done in home-
work 3. Make an analysis of the guessed coupling constant as function of the
hyperparameters λ. You can compare your results with those of Mehta et al..
Make sure it is the 1D data which is used.

Discuss the methods and how they perform in computing the coupling
constant J and include a bias-variance analysis using the bootstrap resampling
method. Discuss also the mean squared error and the R2 score as measures to
assess your model.

Give a critical analysis of your results.
You can replace the Ising model data with the nuclear binding energy data.

Part c): Random forests and boosting. Repeat the above analysis but
using random forests and boosting (XGboost or normal gradient boosting).
You can use the functions in scikit-learn for random forests and gradient

3

https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVI-linreg_ising.html


boosting. For XGBoost you need to install it separately. You can still use
other functionality in scikit-Learn.

Part d): Regression analysis of the one-dimensional Ising model using
neural networks. Your aim now is to use either scikit-learn or tensorflow
in order to set up a neural network to find the optimal weights and biases.

Train your network and compare the results with those from your linear
regression code and random forests/boosting methods.

You can test your results against a similar code using scikit-learn or ten-
sorflow/keras.

A useful reference on the back progagation algorithm is Nielsen’s book. It is
an excellent read.

Finally, give a critical analysis of your results with pros and cons of the
various methods.

Checklist for handling data, Machine Learning cheat sheet
This is a short cheat sheet for doing machine learning experiments. It’ll discuss
data exploration the modelling pipeline and model validation in short with links
to external resources for reference

Data Exploration. When modelling with machine learning it’s easy to just
present your data to a model, while this has the odd chance of working more
likely this will give you a very weak model.

The first step of the machine learning process is then to look at your data,
and your chosen representation of the data.

Visualization. Depending on your data, if it’s sequential, real-continious or
image based your data should be visualized to get a reference for the distribution
of data. In particular for representations of continious or discreet variables visual-
izing ditributions can be hugely helpful to determining the style of normalization
to apply. In short: look at your data.

Normalizing. After inspecting your data distribution(s) you should consider
what standardization techniques to apply. In particular you need to think
about if you need the covariance matrix of your data to be unchanged under
the normalization. Mean centering doesn’t change your covariance matrix,
standardization of the variance does.

Also consider if your features are on the same scale. Your model might be in
trouble if one feature is on the order 100 and a second is on the order 103.

Prototyping. It’s likely that the first version of your chosen model, or even
that the model type or representation might provide unsuitable for the problem
at hand. A fundamental part of the process then is exploring representations,

4

http://neuralnetworksanddeeplearning.com/


and model types that might be suitable. The keras API and scikit-learn
off-the-shelf algorithms are fantastic for this purpose.

Remember to keep your model assumptions in mind The following links
are useful https://sebastianraschka.com/Articles/2014_about_feature_
scaling.html and https://medium.com/greyatom/why-how-and-when-to-scale-your-features-4b30ab09db5e

Model Validation. For a regression problem, supervised classification or
unsupervised classification with a set of ground truth labels it is absolutely
necessary to split your data in disjoint sets for training and testing prior to any
processing. The processing variables should be established from the training set
and applied to test and training. This is to estimate if your normalization is
sane for "unseen" data.

Hyperparameter tuning. For almost all interesting problems the compu-
tational cost of running a gridsearch to find the optimal configuration for the
hyperparameters is not feasible, both because it is expensive, but the loss-surface
might be glassy excepting one very narrow spike your grid doesn’t hit. There
are many sophisticated tools for the job, but for most cases the tool for the
job has shown to be simple random search. Run N experiments with random
hyperparameter configurations and pick the best performing on the validation
set.

Performance estimation. For estimating your models performance the tool
depends on your application. For regression the R2 coefficient (explained vari-
ance) is commonly used, and for linear regression models you usually want an
estimate of coefficient significance (scipy statsmodels is a python package
good for this). For estimating significance and impact you should have a clear
image of the degree of multi-colinearity in your data (does your design matrix
have full rank?). For non-linear models of 1d vectors (not sequence or image
models) estimating feature importance (the impact of removing one feature on
model performance). For image data and convolutional nets visualizing the max
activation of the filters is a good way to estimate what your model is doing.

For classification there usually is a tradeoff between number of true and false
positives. The f1-score (or depending on your model you might favor precision
over recall or vice versa which would need an adjusted f-score) is a good single
number-measure. Plotting the ROC (reciever-operator characteristic) curve and
estimating it’s area under the curve (analogous to accuracy). These curves
are plotted per-class basis, and then you can average over them to produce an
aggregate performance.

You should also use some statsitical measure for model validation. k-fold
cross validation is recommended for most cases.

In essence: what the goal of all this is to be able to estimate the generalization
performance. The training set is used to estimate the optimal parameters and
hyperparameters as well as the distribution of performance under these. For
each hyperparameter search you use the test set to make a final estimation of

5

https://sebastianraschka.com/Articles/2014_about_feature_scaling.html
https://sebastianraschka.com/Articles/2014_about_feature_scaling.html
https://medium.com/greyatom/why-how-and-when-to-scale-your-features-4b30ab09db5e


your generalization performance, going back and adjusting parameters based on
test performance strongly reduces your certainty of generalization and is strongly
discouraged.

Scikit-learn has many off-the shelf measures for model performance and vali-
dation, with examples. The following blogs on this may be of interest https://
towardsdatascience.com/hyper-parameter-tuning-techniques-in-deep-learning-4dad592c63c8
and https://scikit-learn.org/stable/auto_examples/model_selection/
plot_roc_crossval.html#sphx-glr-auto-examples-model-selection-plot-roc-crossval-py

Background literature
1. The text of Michael Nielsen is highly recommended, see Nielsen’s book. It

is an excellent read.

2. The textbook of Trevor Hastie, Robert Tibshirani, Jerome H. Friedman,
The Elements of Statistical Learning, Springer, chapters 3 and 7 are the
most relevant ones for the analysis here.

3. Mehta et al, arXiv 1803.08823, A high-bias, low-variance introduction to
Machine Learning for physicists, ArXiv:1803.08823.

If you wish to read more about the Ising model and statistical physics here are
three suggestions.

1. M. Plischke and B. Bergersen, Equilibrium Statistical Physics, World
Scientific, see chapters 5 and 6.

2. D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in
Statistical Physics, Cambridge, see chapters 2,3 and 4.

3. M. E. J. Newman and T. Barkema, Monte Carlo Methods in Statistical
Physics, Oxford, see chapters 3 and 4.

6

https://towardsdatascience.com/hyper-parameter-tuning-techniques-in-deep-learning-4dad592c63c8
https://towardsdatascience.com/hyper-parameter-tuning-techniques-in-deep-learning-4dad592c63c8
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html#sphx-glr-auto-examples-model-selection-plot-roc-crossval-py
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html#sphx-glr-auto-examples-model-selection-plot-roc-crossval-py
http://neuralnetworksanddeeplearning.com/
https://www.springer.com/gp/book/9780387848570
https://www.springer.com/gp/book/9780387848570
https://arxiv.org/abs/1803.08823
http://www.worldscientific.com/worldscibooks/10.1142/5660
http://www.cambridge.org/no/academic/subjects/physics/computational-science-and-modelling/guide-monte-carlo-simulations-statistical-physics-4th-edition?format=HB
https://global.oup.com/academic/product/monte-carlo-methods-in-statistical-physics-9780198517979?cc=no&lang=en&

