
Fourth and fifth days: Homework set 3

Data Analysis and Machine Learning

May 19, 2020

Day four and five exercises
The exercises here are somewhat longer and we expect to use at least two days
on them.

Exercise 1, Bias-Variance tradeoff and Bootstrap. This exercise is a
continuation of exercise 2 from the second homework set. In that exercise
we computed the MSE and R2-score for the training data and the test data
as functions of the complexity of a polynomial, that is the degree of a given
polynomial.

One of the aims of that exercise was to reproduce Figure 2.11 of Hastie et al.
Our data is defined by x ∈ [−3, 3] with a total of for example 100 data

points. np.random.seed() n = 100 maxdegree = 14 Make data set. x =
np.linspace(-3, 3, n).reshape(-1, 1) y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2)+
np.random.normal(0, 0.1, x.shape) where y is the function we want to fit with
a given polynomial.

Part (1a) Proving the bias-variance tradeoff. Consider a dataset L con-
sisting of the data XL = {(yj ,xj), j = 0 . . . n− 1}.

Let us assume that the true data is generated from a noisy model

y = f(x) + ε.

Here ε is normally distributed with mean zero and standard deviation σ2.
In our derivation of the ordinary least squares method we defined then an

approximation to the function f in terms of the parameters β and the design
matrix X which embody our model, that is ỹ = Xβ.

The parameters β are in turn found by optimizing the means squared error
via the so-called cost function

C(X,β) = 1
n

n−1∑
i=0

(yi − ỹi)2 = E
[
(y − ỹ)2] .

https://github.com/CompPhysics/MLErasmus/blob/master/doc/Textbooks/elementsstat.pdf

Show that you can rewrite this as

E
[
(y − ỹ)2] = 1

n

∑
i

(fi − E [ỹ])2 + 1
n

∑
i

(ỹi − E [ỹ])2 + σ2.

Explain what the terms mean, which one is the bias and which one is the
variance and discuss their interpretations.

Part (1b) Adding Bootstrap and Bias-Variance Tradeoff. Add now
bootstrapping as discussed in the Regression lectures (scroll down to the bias-
variance code). Add also the expressions for the bias and the variance as discussed
above.

Discuss the bias and variance tradeoff as function of your model complexity
(the degree of the polynomial) and the number of data points, and possibly also
your training and test data.

Try to make a figure similar to Fig. 2.11 of Hastie et al. You should include
an analysis of the bias and variance for the test results. Figure 2.11 displays
only the test and training MSEs while indicating regions of low/high bias and
variance. You will most likely not get an equally smooth curve! Note also that
when you calculate the bias, in all applications you don’t know the function
values fi. You would hence replace them with the actual data points yi.

Exercise 2, Linear Regression for a two-dimensional function. This
is a longer exercise and the aim is to study in more detail various regression
methods, including the Ordinary Least Squares (OLS) method, Ridge regression
and finally Lasso regression. The methods are in turn combined with resampling
techniques.

We will study how to fit polynomials to a specific two-dimensional function
called Franke’s function. This is a function which has been widely used when
testing various interpolation and fitting algorithms. Furthermore, after having
established the model and the method, we will employ resamling like the boot-
strap from the previous exercise in order to perform a proper assessment of our
models. We will also study in detail the so-called Bias-Variance trade off.

The Franke function, which is a weighted sum of four exponentials reads as
follows

f(x, y) = 3
4 exp

(
− (9x− 2)2

4 − (9y − 2)2

4

)
+ 3

4 exp
(
− (9x+ 1)2

49 − (9y + 1)
10

)
+ 1

2 exp
(
− (9x− 7)2

4 − (9y − 3)2

4

)
− 1

5 exp
(
−(9x− 4)2 − (9y − 7)2).

The function will be defined for x, y ∈ [0, 1]. Our first step will be to perform
an OLS regression analysis of this function, trying out a polynomial fit with
an x and y dependence of the form [x, y, x2, y2, xy, . . .]. We will also include
cross-validation (or bootstrap) as resampling technique. As in homeworks 1 and
2, we can use a uniform distribution to set up the arrays of values for x and y, or

2

https://compphysics.github.io/MLErasmus/doc/pub/Regression/html/Regression.html
http://www.dtic.mil/dtic/tr/fulltext/u2/a081688.pdf

as in the example below just a set of fixed values for x and y with a given step
size. We will fit a function (for example a polynomial) of x and y. Thereafter
we will repeat much of the same procedure using the Ridge and Lasso regression
methods, introducing thus a dependence on the bias (penalty) λ.

Finally we are going to use (real) digital terrain data and try to reproduce
these data using the same methods. We will also try to go beyond the second-
order polynomials metioned above and explore which polynomial fits the data
best.

The Python fucntion for the Franke function is included here (it performs also
a three-dimensional plot of it) from mpltoolkits.mplot3dimportAxes3Dimportmatplotlib.pyplotaspltfrommatplotlibimportcmfrommatplotlib.tickerimportLinearLocator, FormatStrFormatterimportnumpyasnpfromrandomimportrandom, seed

fig = plt.figure() ax = fig.gca(projection=’3d’)
Make data. x = np.arange(0, 1, 0.05) y = np.arange(0, 1, 0.05) x, y =

np.meshgrid(x,y)
def FrankeFunction(x,y): term1 = 0.75*np.exp(-(0.25*(9*x-2)**2) - 0.25*((9*y-

2)**2)) term2 = 0.75*np.exp(-((9*x+1)**2)/49.0 - 0.1*(9*y+1)) term3 = 0.5*np.exp(-
(9*x-7)**2/4.0 - 0.25*((9*y-3)**2)) term4 = -0.2*np.exp(-(9*x-4)**2 - (9*y-
7)**2) return term1 + term2 + term3 + term4

z = FrankeFunction(x, y)
Plot the surface. surf = ax.plotsurface(x, y, z, cmap = cm.coolwarm, linewidth =

0, antialiased = False)
Customize the z axis. ax.setzlim(−0.10, 1.40)ax.zaxis.setmajorlocator(LinearLocator(10))ax.zaxis.setmajorformatter(FormatStrFormatter(′
Add a color bar which maps values to colors. fig.colorbar(surf, shrink=0.5,

aspect=5)
plt.show()

(2a) Ordinary Least Square on the Franke function with resampling.
We will generate our own dataset for a function FrankeFunction(x, y) with
x, y ∈ [0, 1]. The function f(x, y) is the Franke function. You should explore
also the addition an added stochastic noise to this function using the normal
distribution N (′,∞).

Write your own code (using either a matrix inversion or a singular value
decomposition from e.g., numpy) or use your code from homeworks 1 and 2
and perform a standard least square regression analysis using polynomials in x
and y up to fifth order. You can use scikit-learn as well.

Evaluate the Mean Squared error (MSE)

MSE(ŷ, ˆ̃y) = 1
n

n−1∑
i=0

(yi − ỹi)2,

and the R2 score function. If ˜̂yi is the predicted value of the i− th sample
and yi is the corresponding true value, then the score R2 is defined as

R2(ŷ, ˜̂y) = 1−
∑n−1

i=0 (yi − ỹi)2∑n−1
i=0 (yi − ȳ)2

,

where we have defined the mean value of ŷ as

3

ȳ = 1
n

n−1∑
i=0

yi.

To set up the design matrix, the following code can be used def FrankeFunc-
tion(x,y): term1 = 0.75*np.exp(-(0.25*(9*x-2)**2) - 0.25*((9*y-2)**2)) term2
= 0.75*np.exp(-((9*x+1)**2)/49.0 - 0.1*(9*y+1)) term3 = 0.5*np.exp(-(9*x-
7)**2/4.0 - 0.25*((9*y-3)**2)) term4 = -0.2*np.exp(-(9*x-4)**2 - (9*y-7)**2)
return term1 + term2 + term3 + term4

def createX(x, y, n) : if len(x.shape) > 1 : x = np.ravel(x)y = np.ravel(y)
N = len(x) l = int((n+1)*(n+2)/2) Number of elements in beta X =

np.ones((N,l))
for i in range(1,n+1): q = int((i)*(i+1)/2) for k in range(i+1): X[:,q+k] =

(x**(i-k))*(y**k)
return X
Making meshgrid of datapoints and compute Franke’s function n = 5 N =

1000 x = np.sort(np.random.uniform(0, 1, N)) y = np.sort(np.random.uniform(0,
1, N)) z = FrankeFunction(x, y) X = createX(x, y, n = n)

Part (2b) Resampling techniques, adding more complexity. Perform
a resampling of the data where you split the data in training data and test data.
Here you can write your own function or use the function for splitting training
data provided by Scikit-Learn. This function is called train_test_split. You
should also renormalize your data.

It is normal in essentially all Machine Learning studies to split the data in a
training set and a test set (sometimes also an additional validation set). There
is no explicit recipe for how much data should be included as training data and
say test data. An accepted rule of thumb is to use approximately 2/3 to 4/5 of
the data as training data.

Use then the bootstrapcodeyoudevelopedinthepreviousexercisetoresampleyourdataandevaluateagaintheMSEfunctionresultingfromthetestdata.

Part (2c): Bias-variance tradeoff. With a code which does OLS and in-
cludes bootstrap we will now discuss the bias-variance tradeoff in the context
of continuous predictions such as regression. However, many of the intuitions
and ideas discussed here also carry over to classification tasks and basically all
Machine Learning algorithms.

Use the code from exercise 1 above and implement the bootstrap resampling
and perform a bias-variance tradeoff analysis like you did in exercise 1.

Part (2d): Ridge Regression on the Franke function with resampling.
Write your own code for the Ridge method, either using matrix inversion or the
singular value decomposition ir use scikit-learn Perform the same analysis as
in the previous three steps (for the same polynomials and include resampling
techniques) but now for different values of λ. Compare and analyze your results
with those obtained in parts 2a-2c). Study the dependence on λ.

4

Study also the bias-variance tradeoff as function of various values of the
parameter λ. Comment your results.

Part (2e): Lasso Regression on the Franke function with resampling.
This part is essentially a repeat of the previous ones, but now with Lasso
regression. Write either your own code or use the functionalities of Scikit-
Learn (recommended). Give a critical discussion of the three methods and a
judgement of which model fits the data best.

5

