
First and second days: Homework 1

Data Analysis and Machine Learning

May 19, 2020

Day one and two exercises
Exercise 1. The first exercise here is of a mere technical art. We want you to
have

• git as a version control software and to establish a user account on a
provider like GitHub. Other providers like GitLab etc are equally fine.

• Install various Python packages

We will make extensive use of Python as programming language and its myriad
of available libraries. You will find IPython/Jupyter notebooks invaluable in
your work. You can run R codes in the Jupyter/IPython notebooks, with the
immediate benefit of visualizing your data. You can also use compiled languages
like C++, Rust, Fortran etc if you prefer. The focus in these lectures will be on
Python.

If you have Python installed (we recommend Python3) and you feel pretty
familiar with installing different packages, we recommend that you install the
following Python packages via pip as

1. pip install numpy scipy matplotlib ipython scikit-learn sympy pandas
pillow

For Tensorflow, we recommend following the instructions in the text of Aurelien
Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow, O’Reilly

We will come back to tensorflow later.
For Python3, replace pip with pip3.
For OSX users we recommend, after having installed Xcode, to install brew.

Brew allows for a seamless installation of additional software via for example

1. brew install python3

For Linux users, with its variety of distributions like for example the widely
popular Ubuntu distribution, you can use pip as well and simply install Python
as

http://shop.oreilly.com/product/0636920052289.do
http://shop.oreilly.com/product/0636920052289.do


1. sudo apt-get install python3 (or python for Python2.7)

If you don’t want to perform these operations separately and venture into the
hassle of exploring how to set up dependencies and paths, we recommend two
widely used distrubutions which set up all relevant dependencies for Python,
namely

• Anaconda,

which is an open source distribution of the Python and R programming languages
for large-scale data processing, predictive analytics, and scientific computing,
that aims to simplify package management and deployment. Package versions
are managed by the package management system conda.

• Enthought canopy

is a Python distribution for scientific and analytic computing distribution and
analysis environment, available for free and under a commercial license.

We recommend using Anaconda.

Exercise 2: Python getting started. This exercise has as its aim to write
a small program which reads in data from a csv file on the equation of state for
dense nuclear matter. The file is localized at https://github.com/mhjensen/
MachineLearningMSU-FRIB2020/blob/master/doc/pub/Regression/ipynb/datafiles/
EoS.csv. Thereafter you will have to set up the design matrix X for the n
datapoints and a polynomial of degree 3. The steps are:

• Write a Python code which reads the in the above mentioned file.

• Use for example pandas to order your data and find out how many data
points there are.

• Set thereafter up the design matrix with dimensionality n× p where p = 4
and where you have defined a polynomial of degree p− 1 = 3. Print the
matrix and check that the numbers are correct.

We recommend looking at the examples in the regression slides.

Exercise 3. We will generate our own dataset for a function y(x) where
x ∈ [0, 1] and defined by random numbers computed with the uniform distri-
bution. The function y is a quadratic polynomial in x with added stochas-
tic noise according to the normal distribution N (′,∞). The following simple
Python instructions define our x and y values (with 100 data points). x =
np.random.rand(100,1) y = 5*x*x+0.1*np.random.randn(100,1)

1. Write your own code (following the examples under the regression slides)
for computing the parametrization of the data set fitting a second-order
polynomial.

2

https://docs.anaconda.com/
https://www.enthought.com/product/canopy/
https://github.com/mhjensen/MachineLearningMSU-FRIB2020/blob/master/doc/pub/Regression/ipynb/datafiles/EoS.csv
https://github.com/mhjensen/MachineLearningMSU-FRIB2020/blob/master/doc/pub/Regression/ipynb/datafiles/EoS.csv
https://github.com/mhjensen/MachineLearningMSU-FRIB2020/blob/master/doc/pub/Regression/ipynb/datafiles/EoS.csv
https://compphysics.github.io/MachineLearning/doc/pub/Regression/html/Regression-bs.html
https://compphysics.github.io/MachineLearning/doc/pub/Regression/html/Regression-bs.html


2. Use thereafter scikit-learn (see again the examples in the regression slides)
and compare with your own code.

3. Using scikit-learn, compute also the mean square error, a risk metric
corresponding to the expected value of the squared (quadratic) error
defined as

MSE(ŷ, ˆ̃y) = 1
n

n−1∑
i=0

(yi − ỹi)2,

and the R2 score function. If ˜̂yi is the predicted value of the i− th sample and
yi is the corresponding true value, then the score R2 is defined as

R2(ŷ, ˜̂y) = 1−
∑n−1

i=0 (yi − ỹi)2∑n−1
i=0 (yi − ȳ)2

,

where we have defined the mean value of ŷ as

ȳ = 1
n

n−1∑
i=0

yi.

You can use the functionality included in scikit-learn. If you feel for it, you
can use your own program and define functions which compute the above two
functions. Discuss the meaning of these results. Try also to vary the coefficient
in front of the added stochastic noise term and discuss the quality of the fits.

Exercise 4, mean values and variances in linear regression. This exer-
cise deals with various mean values ad variances in linear regression method
(here it may be useful to look up chapter 3, equation (3.8) of Trevor Hastie,
Robert Tibshirani, Jerome H. Friedman, The Elements of Statistical Learning,
Springer).

The assumption we have made is that there exists a function f(x) and a
normal distributed error ε ∼ N (0, σ2) which describes our data

y = f(x) + ε

We then approximate this function with our model from the solution of the
linear regression equations (ordinary least squares OLS), that is our function f
is approximated by ỹ where we minimized (y − ỹ)2, with

ỹ = Xβ.

The matrix X is the so-called design matrix.
Show that the expectation value of y for a given element i

E(yi) = Xi,∗ β,

3

https://www.springer.com/gp/book/9780387848570
https://www.springer.com/gp/book/9780387848570
https://www.springer.com/gp/book/9780387848570


and that its variance is

Var(yi) = σ2.

Hence, yi ∼ N (Xi,∗ β, σ
2), that is y follows a normal distribution with mean

value Xβ and variance σ2.
With the OLS expressions for the parameters β show that

E(β) = β.

This means that the estimator of the regression parameters is unbiased.
Show finally that the variance of β is

Var(β) = σ2 (XT X)−1.

Exercise 5. Finally, try now to write your own code (you can use the exam-
ple the nuclear masses in the lecture slides on Regression and Getting started, see
https://compphysics.github.io/MLErasmus/doc/pub/Regression/html/Regression-bs.
html and https://compphysics.github.io/MLErasmus/doc/pub/How2ReadData/
html/How2ReadData-bs.html) that reads in the nuclear masses and compute
the proton separation energies, the two-neutron and two-proton separation
energies and finally the shell gaps for selected nuclei.

Finally, try to compute the Q-values for β− decay for selected nuclei.
We will use this code later as a starting point for our discussions on linear

regression.

4

https://compphysics.github.io/MLErasmus/doc/pub/Regression/html/Regression-bs.html
https://compphysics.github.io/MLErasmus/doc/pub/Regression/html/Regression-bs.html
https://compphysics.github.io/MLErasmus/doc/pub/How2ReadData/html/How2ReadData-bs.html
https://compphysics.github.io/MLErasmus/doc/pub/How2ReadData/html/How2ReadData-bs.html

